山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (4): 10-16.doi: 10.6040/j.issn.1671-7554.0.2021.0175
Li KUANG1,*(),Xiaoming XU1,Qi ZENG2
摘要:
全球每年有80万人死于自杀,自杀未遂数量大约是其20倍。自杀不仅是严重的公共卫生事件,而且对自杀者周围的人产生重大而深远的影响。更准确、便捷、及时地预测自杀行为一直是研究者的目标。论文对近五年应用于自杀意念与行为的机器学习研究进行回顾,分析机器学习用于自杀研究的有效性、可行性,对机器学习应用于自杀领域的研究提出建议,为未来的研究提供方向。
中图分类号:
1 |
Naghavi M , Global Burden of Disease Self-Harm Collaborators . Global, regional, and national burden of suicide mortality 1990 to 2016: systematic analysis for the Global Burden of Disease Study 2016[J]. BMJ, 2019, 364, l94.
doi: 10.1136/bmj.l94 |
2 |
Franklin JC , Ribeiro JD , Fox KR , et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research[J]. Psychol Bull, 2017, 143 (2): 187- 232.
doi: 10.1037/bul0000084 |
3 |
Falcone T , Dagar A , Castilla-Puentes RC , et al. Digital conversations about suicide among teenagers and adults with epilepsy: a big-data, machine learning analysis[J]. Epilepsia, 2020, 61 (5): 951- 958.
doi: 10.1111/epi.16507 |
4 |
Carson NJ , Mullin B , Sanchez MJ , et al. Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records[J]. PLoS One, 2019, 14 (2): e0211116.
doi: 10.1371/journal.pone.0211116 |
5 |
Pestian JP , Grupp-Phelan J , Cohen KB , et al. A controlled trial using natural language processing to examine the language of suicidal adolescents in the Emergency Department[J]. Suicide Life Threat Behav, 2016, 46 (2): 154- 159.
doi: 10.1111/sltb.12180 |
6 |
Miché M , Studerus E , Meyer AH , et al. Prospective prediction of suicide attempts in community adolescents and young adults, using regression methods and machine learning[J]. J Affect Disord, 2020, 265, 570- 578.
doi: 10.1016/j.jad.2019.11.093 |
7 |
Hill RM , Oosterhoff B , Do C . Using machine learning to identify suicide risk: a classification tree approach to prospectively identify adolescent suicide attempters[J]. Arch Suicide Res, 2020, 24 (2): 218- 235.
doi: 10.1080/13811118.2019.1615018 |
8 |
Walsh CG , Ribeiro JD , Franklin JC . Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning[J]. J Child Psychol Psychiatry, 2018, 59 (12): 1261- 1270.
doi: 10.1111/jcpp.12916 |
9 |
Jung JS , Park SJ , Kim EY , et al. Prediction models for high risk of suicide in Korean adolescents using machine learning techniques[J]. PLoS One, 2019, 14 (6): e0217639.
doi: 10.1371/journal.pone.0217639 |
10 |
Bae SM , Lee SA , Lee SH . Prediction by data mining, of suicide attempts in Korean adolescents: a national study[J]. Neuropsychiatr Dis Treat, 2015, 11, 2367- 2375.
doi: 10.2147/NDT.S91111 |
11 |
Burke TA , Jacobucci R , Ammerman BA , et al. Using machine learning to classify suicide attempt history among youth in medical care settings[J]. J Affect Disord, 2020, 268, 206- 214.
doi: 10.1016/j.jad.2020.02.048 |
12 |
Kessler RC , Warner CH , Ivany C , et al. Predicting suicides after psychiatric hospitalization in US army soldiers: the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS)[J]. JAMA Psychiatry, 2015, 72 (1): 49- 57.
doi: 10.1001/jamapsychiatry.2014.1754 |
13 |
Gong J , Simon GE , Liu S . Machine learning discovery of longitudinal patterns of depression and suicidal ideation[J]. PLoS One, 2019, 14 (9): e0222665.
doi: 10.1371/journal.pone.0222665 |
14 |
Senior M , Burghart M , Yu R , et al. Identifying predictors of suicide in severe mental illness: a feasibility study of a clinical prediction rule (Oxford Mental Illness and Suicide Tool or OxMIS)[J]. Front Psychiatry, 2020, 11, 268.
doi: 10.3389/fpsyt.2020.00268 |
15 |
Oh J , Yun K , Hwang JH , et al. Classification of suicide attempts through a machine learning algorithm based on multiple systemic psychiatric scales[J]. Frontiers in Psychiatry, 2017, 8, 192.
doi: 10.3389/fpsyt.2017.00192 |
16 |
Berrouiguet S , Barrigón ML , Castroman JL , et al. Combining mobile-health (mHealth) and artificial intelligence (AI) methods to avoid suicide attempts: the Smartcrises study protocol[J]. BMC Psychiatry, 2019, 19 (1): 277.
doi: 10.1186/s12888-019-2260-y |
17 | Barros J , Morales S , Echavarri O , et al. Suicide detection in Chile: proposing a predictive model for suicide risk in a clinical sample of patients with mood disorders[J]. Braz J Psychiatry, 2017, 39 (1): 1- 11. |
18 |
Hettige NC , Nguyen TB , Yuan C , et al. Classification of suicide attempters in schizophrenia using sociocultural and clinical features: a machine learning approach[J]. Gen Hosp Psychiatry, 2017, 47, 20- 28.
doi: 10.1016/j.genhosppsych.2017.03.001 |
19 | Zalar B , Kores B , Zalar I , et al. Suicide and suicide attempt descriptors by multimethod approach[J]. Psychiatr Danub, 2018, 30 (3): 317- 322. |
20 |
Kessler RC , Hwang I , Hoffmire CA , et al. Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration[J]. Int J Methods Psychiatr Res, 2017, 26 (3): e1575.
doi: 10.1002/mpr.1575 |
21 |
Gradus JL , Rosellini AJ , Horváth-Puhó E , et al. Prediction of sex-specific suicide risk using machine learning and single-payer health care registry data from Denmark[J]. JAMA Psychiatry, 2020, 77 (1): 25- 34.
doi: 10.1001/jamapsychiatry.2019.2905 |
22 |
Sanderson M , Bulloch AGM , Wang J , et al. Predicting death by suicide using administrative health care system data: can feedforward neural network models improve upon logistic regression models?[J]. J Affect Disord, 2019, 257, 741- 747.
doi: 10.1016/j.jad.2019.07.063 |
23 |
Ludwig B , König D , Kapusta ND , et al. Clustering suicides: a data-driven, exploratory machine learning approach[J]. Eur Psychiatry, 2019, 62, 15- 19.
doi: 10.1016/j.eurpsy.2019.08.009 |
24 |
Liu D , Yu M , Duncan J , et al. Discovering the unclassified suicide cases among undetermined drug overdose deaths using machine learning techniques[J]. Suicide Life Threat Behav, 2020, 50 (2): 333- 344.
doi: 10.1111/sltb.12591 |
25 |
Choi SB , Lee W , Yoon JH , et al. Ten-year prediction of suicide death using Cox regression and machine learning in a nationwide retrospective cohort study in South Korea[J]. J Affect Disord, 2018, 231, 8- 14.
doi: 10.1016/j.jad.2018.01.019 |
26 |
Walsh CG , Ribeiro JD , Franklin JC . Predicting risk of suicide attempts over time through machine learning[J]. Clin Psychol Science, 2017, 5 (3): 457- 469.
doi: 10.1177/2167702617691560 |
27 |
Metzger MH , Tvardik N , Gicquel Q , et al. Use of emergency department electronic medical records for automated epidemiological surveillance of suicide attempts: a French pilot study[J]. Int J Methods Psychiatr Res, 2017, 26 (2): e1522.
doi: 10.1002/mpr.1522 |
28 |
Zheng L , Wang O , Hao S , et al. Development of an early-warning system for high-risk patients for suicide attempt using deep learning and electronic health records[J]. Transl Psychiatry, 2020, 10 (1): 72.
doi: 10.1038/s41398-020-0684-2 |
29 |
Bhak Y , Jeong HO , Cho YS , et al. Depression and suicide risk prediction models using blood-derived multi-omics data[J]. Transl Psychiatry, 2019, 9 (1): 262.
doi: 10.1038/s41398-019-0595-2 |
30 |
Pestian JP , Sorter M , Connolly B , et al. A machine learning approach to identifying the thought markers of suicidal subjects: a Prospective Multicenter Trial[J]. Suicide Life Threat Behav, 2017, 47 (1): 112- 121.
doi: 10.1111/sltb.12312 |
31 |
Haroz EE , Walsh CG , Goklish N , et al. Reaching those at highest risk for suicide: development of a model using machine learning methods for use with Native American Communities[J]. Suicide Life Threat Behav, 2020, 50 (2): 422- 436.
doi: 10.1111/sltb.12598 |
32 |
Just MA , Pan L , Cherkassky VL , et al. Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth[J]. Nat Hum Behav, 2017, 1, 911- 919.
doi: 10.1038/s41562-017-0234-y |
33 |
Weng JC , Lin TY , Tsai YH , et al. An autoencoder and machine learning model to predict suicidal ideation with Brain structural imaging[J]. J Clin Med, 2020, 9 (3): 658.
doi: 10.3390/jcm9030658 |
34 |
Ryu S , Lee H , Lee DK , et al. Detection of suicide attempters among suicide ideators using machine learning[J]. Psychiatry Investig, 2019, 16, 588- 593.
doi: 10.30773/pi.2019.06.19 |
35 |
Kessler RC , Chalker SA , Luedtke AR , et al. A preliminary precision treatment rule for remission of suicide ideation[J]. Suicide Life Threat Behav, 2020, 50 (2): 558- 572.
doi: 10.1111/sltb.12609 |
36 | Vioules MJ , Moulahi B , Aze J , et al. Detection of suicide-related posts in Twitter data streams[J]. IBM J Res Devel, 2018, 62 (1): 1- 12. |
37 |
Braithwaite SR , Giraud-Carrier C , West J , et al. Validating machine learning algorithms for twitter data against established measures of suicidality[J]. JMIR Mental Health, 2016, 3 (2): e21.
doi: 10.2196/mental.4822 |
38 |
Barak-Corren Y , Castro VM , Nock MK , et al. Validation of an electronic health record-based suicide risk prediction modeling approach across multiple health care systems[J]. JAMA Netw Open, 2020, 3 (3): e201262.
doi: 10.1001/jamanetworkopen.2020.1262 |
39 |
Sanderson M , Bulloch AG , Wang JL , et al. Predicting death by suicide using administrative health care system data: can recurrent neural network, one-dimensional convolutional neural network, and gradient boosted trees models improve prediction performance?[J]. J Affect Disord, 2020, 264, 107- 114.
doi: 10.1016/j.jad.2019.12.024 |
40 |
Fernandes AC , Dutta R , Velupillai S , et al. Identifying suicide ideation and suicidal attempts in a psychiatric clinical research database using natural language processing[J]. Sci Rep, 2018, 8 (1): 7426.
doi: 10.1038/s41598-018-25773-2 |
[1] | 赵思博,彭立,凌鸿翔. 农村老年人医疗保险参与和自杀风险的关系[J]. 山东大学学报 (医学版), 2022, 60(4): 113-118. |
[2] | 李献云,杨甫德. 自杀倾向的认知行为治疗[J]. 山东大学学报 (医学版), 2022, 60(4): 1-9. |
[3] | 申雨霏,赵美,胡宓. 有自杀意念中学生的求助意愿、求助行为现状及其相关因素[J]. 山东大学学报 (医学版), 2022, 60(4): 99-106. |
[4] | 徐小明,孔裔婷,刘川,明英,况利. 青少年和年轻成人自杀预警系统研究进展[J]. 山东大学学报 (医学版), 2022, 60(2): 69-74. |
[5] | 苏永刚,王睿,杨同卫. 健康中国视域下老年人群自杀的影响因素及预防对策[J]. 山东大学学报 (医学版), 2022, 60(2): 8-13. |
[6] | 贾存显,刘珍珍. 关注睡眠问题,预防青少年自伤[J]. 山东大学学报 (医学版), 2022, 60(2): 1-7. |
[7] | 姚志英,魏艳欣,汪心婷,张杰,贾存显. 农村居民自杀行为暴露与自杀未遂关系的研究[J]. 山东大学学报 (医学版), 2022, 60(1): 86-92. |
[8] | 王超,张艺琳,邹广顺,吕军城. 686名医学生有无自杀意念调查及影响因素分析[J]. 山东大学学报 (医学版), 2022, 60(1): 78-85. |
[9] | 毕凤英,闫冬勤,陈曦,罗丹. HIV感染者/艾滋病患者自杀死亡危险因素理论框架构建——基于扎根理论的定性研究[J]. 山东大学学报 (医学版), 2022, 60(1): 109-117. |
[10] | 姜震,孙静,邹雯,王唱唱,高琦. 基于两种机器学习算法的双相情感障碍患者自杀行为影响因素模型比较研究[J]. 山东大学学报 (医学版), 2022, 60(1): 101-108. |
[11] | 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49. |
[12] | 魏艳欣,汪心婷,刘宝鹏,李媛媛,张吉玉,贾存显. 山东省农村自杀未遂者自杀行为的聚类分析[J]. 山东大学学报 (医学版), 2021, 59(11): 108-113. |
[13] | 秦艺文,杨晓帆,魏艳欣,刘宝鹏,Bob Lew,贾存显. 大学生生命意义感在心理扭力和自杀行为风险间的中介作用[J]. 山东大学学报 (医学版), 2021, 59(11): 76-83. |
[14] | 张艺琳,王超,邹广顺,吕军城. 医学生生命意义感与自杀意念的关系[J]. 山东大学学报 (医学版), 2021, 59(11): 93-99. |
[15] | 陈擎仪,张烜,王娟,孙继伟,曹丹凤, 曹枫林. 妊娠期女性自杀意念的危险因素及其累积效应[J]. 山东大学学报 (医学版), 2021, 59(1): 91-94. |
|