您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2022, Vol. 60 ›› Issue (4): 10-16.doi: 10.6040/j.issn.1671-7554.0.2021.0175

• 专家综述 • 上一篇    下一篇

机器学习用于自杀研究的综述

况利1,*(),徐小明1,曾琪2   

  1. 1. 重庆医科大学附属第一医院精神科, 重庆 400016
    2. 重庆医科大学附属大学城医院心理卫生中心, 重庆 401331
  • 收稿日期:2021-02-09 出版日期:2022-04-10 发布日期:2022-04-22
  • 通讯作者: 况利 E-mail:kuangli0308@163.com
  • 作者简介:况利,教授,博士研究生导师,重庆医科大学精神医学系主任, 重庆医科大学附属大学城医院心理卫生中心主任。主要研究方向为青少年心理卫生、焦虑抑郁和自杀、突发事件危机干预。以第一作者和通讯作者发表国内外核心期刊文章百余篇,参编国家级教材10余部,主持科研课题30余项。目前为教育部高等学校精神医学专业教学指导委员会委员,中华医学会心身医学分会副主任委员,中华医学会精神医学会及行为医学分会常务委员,中国心理卫生协会心身专委会常务委员,重庆市心理健康研究中心主任,西部精神医学协会副会长,重庆市医学会精神病学专委会主任委员,重庆医院协会精神卫生防治机构管理分会会长,重庆法医精神病司法鉴定专委会主任委员,2016年获聘“中华医学会精神卫生科普专家”,2018年获得“中国心身医学特殊贡献奖”,2019年获得“重庆市第三批学术技术带头人”称号,2021年获得重庆英才计划“重庆英才·名家名师”称号
  • 基金资助:
    国家自然科学基金(81671360);国家自然科学基金(81971286);重庆市自然科学基金(cstc2018jcyjAX0164);重庆市科卫联合医学科研项目(2018QNXM014);重庆市社会事业与民生保障科技创新专项重点研发项目(cstc2017shms-zdyfX0038)

Review of machine learning used in the field of suicide

Li KUANG1,*(),Xiaoming XU1,Qi ZENG2   

  1. 1. Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
    2. Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
  • Received:2021-02-09 Online:2022-04-10 Published:2022-04-22
  • Contact: Li KUANG E-mail:kuangli0308@163.com

摘要:

全球每年有80万人死于自杀,自杀未遂数量大约是其20倍。自杀不仅是严重的公共卫生事件,而且对自杀者周围的人产生重大而深远的影响。更准确、便捷、及时地预测自杀行为一直是研究者的目标。论文对近五年应用于自杀意念与行为的机器学习研究进行回顾,分析机器学习用于自杀研究的有效性、可行性,对机器学习应用于自杀领域的研究提出建议,为未来的研究提供方向。

关键词: 机器学习, 自杀, 自杀未遂, 自杀意念, 大数据

Abstract:

A total of 800, 000 people die of suicide every year over the world, and the number of attempted suicides is about 20 times number of suicide. Suicide not only is a serious public health event, but also significantly and far-reachingly impact on people around suicides. More accurate, convenient, and timely prediction of suicidal behavior has always been the goal of researchers. This study summarized the researches on machine learning applied to suicidal ideation and behavior in the past 5 years, analyzed the effectiveness and feasibility of machine learning for suicide research, made recommendations, and provided a direction for future research.

Key words: Machine learning, Suicide, Suicide attempt, Suicidal ideation, Big data

中图分类号: 

  • R774
1 Naghavi M , Global Burden of Disease Self-Harm Collaborators . Global, regional, and national burden of suicide mortality 1990 to 2016: systematic analysis for the Global Burden of Disease Study 2016[J]. BMJ, 2019, 364, l94.
doi: 10.1136/bmj.l94
2 Franklin JC , Ribeiro JD , Fox KR , et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research[J]. Psychol Bull, 2017, 143 (2): 187- 232.
doi: 10.1037/bul0000084
3 Falcone T , Dagar A , Castilla-Puentes RC , et al. Digital conversations about suicide among teenagers and adults with epilepsy: a big-data, machine learning analysis[J]. Epilepsia, 2020, 61 (5): 951- 958.
doi: 10.1111/epi.16507
4 Carson NJ , Mullin B , Sanchez MJ , et al. Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records[J]. PLoS One, 2019, 14 (2): e0211116.
doi: 10.1371/journal.pone.0211116
5 Pestian JP , Grupp-Phelan J , Cohen KB , et al. A controlled trial using natural language processing to examine the language of suicidal adolescents in the Emergency Department[J]. Suicide Life Threat Behav, 2016, 46 (2): 154- 159.
doi: 10.1111/sltb.12180
6 Miché M , Studerus E , Meyer AH , et al. Prospective prediction of suicide attempts in community adolescents and young adults, using regression methods and machine learning[J]. J Affect Disord, 2020, 265, 570- 578.
doi: 10.1016/j.jad.2019.11.093
7 Hill RM , Oosterhoff B , Do C . Using machine learning to identify suicide risk: a classification tree approach to prospectively identify adolescent suicide attempters[J]. Arch Suicide Res, 2020, 24 (2): 218- 235.
doi: 10.1080/13811118.2019.1615018
8 Walsh CG , Ribeiro JD , Franklin JC . Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning[J]. J Child Psychol Psychiatry, 2018, 59 (12): 1261- 1270.
doi: 10.1111/jcpp.12916
9 Jung JS , Park SJ , Kim EY , et al. Prediction models for high risk of suicide in Korean adolescents using machine learning techniques[J]. PLoS One, 2019, 14 (6): e0217639.
doi: 10.1371/journal.pone.0217639
10 Bae SM , Lee SA , Lee SH . Prediction by data mining, of suicide attempts in Korean adolescents: a national study[J]. Neuropsychiatr Dis Treat, 2015, 11, 2367- 2375.
doi: 10.2147/NDT.S91111
11 Burke TA , Jacobucci R , Ammerman BA , et al. Using machine learning to classify suicide attempt history among youth in medical care settings[J]. J Affect Disord, 2020, 268, 206- 214.
doi: 10.1016/j.jad.2020.02.048
12 Kessler RC , Warner CH , Ivany C , et al. Predicting suicides after psychiatric hospitalization in US army soldiers: the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS)[J]. JAMA Psychiatry, 2015, 72 (1): 49- 57.
doi: 10.1001/jamapsychiatry.2014.1754
13 Gong J , Simon GE , Liu S . Machine learning discovery of longitudinal patterns of depression and suicidal ideation[J]. PLoS One, 2019, 14 (9): e0222665.
doi: 10.1371/journal.pone.0222665
14 Senior M , Burghart M , Yu R , et al. Identifying predictors of suicide in severe mental illness: a feasibility study of a clinical prediction rule (Oxford Mental Illness and Suicide Tool or OxMIS)[J]. Front Psychiatry, 2020, 11, 268.
doi: 10.3389/fpsyt.2020.00268
15 Oh J , Yun K , Hwang JH , et al. Classification of suicide attempts through a machine learning algorithm based on multiple systemic psychiatric scales[J]. Frontiers in Psychiatry, 2017, 8, 192.
doi: 10.3389/fpsyt.2017.00192
16 Berrouiguet S , Barrigón ML , Castroman JL , et al. Combining mobile-health (mHealth) and artificial intelligence (AI) methods to avoid suicide attempts: the Smartcrises study protocol[J]. BMC Psychiatry, 2019, 19 (1): 277.
doi: 10.1186/s12888-019-2260-y
17 Barros J , Morales S , Echavarri O , et al. Suicide detection in Chile: proposing a predictive model for suicide risk in a clinical sample of patients with mood disorders[J]. Braz J Psychiatry, 2017, 39 (1): 1- 11.
18 Hettige NC , Nguyen TB , Yuan C , et al. Classification of suicide attempters in schizophrenia using sociocultural and clinical features: a machine learning approach[J]. Gen Hosp Psychiatry, 2017, 47, 20- 28.
doi: 10.1016/j.genhosppsych.2017.03.001
19 Zalar B , Kores B , Zalar I , et al. Suicide and suicide attempt descriptors by multimethod approach[J]. Psychiatr Danub, 2018, 30 (3): 317- 322.
20 Kessler RC , Hwang I , Hoffmire CA , et al. Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration[J]. Int J Methods Psychiatr Res, 2017, 26 (3): e1575.
doi: 10.1002/mpr.1575
21 Gradus JL , Rosellini AJ , Horváth-Puhó E , et al. Prediction of sex-specific suicide risk using machine learning and single-payer health care registry data from Denmark[J]. JAMA Psychiatry, 2020, 77 (1): 25- 34.
doi: 10.1001/jamapsychiatry.2019.2905
22 Sanderson M , Bulloch AGM , Wang J , et al. Predicting death by suicide using administrative health care system data: can feedforward neural network models improve upon logistic regression models?[J]. J Affect Disord, 2019, 257, 741- 747.
doi: 10.1016/j.jad.2019.07.063
23 Ludwig B , König D , Kapusta ND , et al. Clustering suicides: a data-driven, exploratory machine learning approach[J]. Eur Psychiatry, 2019, 62, 15- 19.
doi: 10.1016/j.eurpsy.2019.08.009
24 Liu D , Yu M , Duncan J , et al. Discovering the unclassified suicide cases among undetermined drug overdose deaths using machine learning techniques[J]. Suicide Life Threat Behav, 2020, 50 (2): 333- 344.
doi: 10.1111/sltb.12591
25 Choi SB , Lee W , Yoon JH , et al. Ten-year prediction of suicide death using Cox regression and machine learning in a nationwide retrospective cohort study in South Korea[J]. J Affect Disord, 2018, 231, 8- 14.
doi: 10.1016/j.jad.2018.01.019
26 Walsh CG , Ribeiro JD , Franklin JC . Predicting risk of suicide attempts over time through machine learning[J]. Clin Psychol Science, 2017, 5 (3): 457- 469.
doi: 10.1177/2167702617691560
27 Metzger MH , Tvardik N , Gicquel Q , et al. Use of emergency department electronic medical records for automated epidemiological surveillance of suicide attempts: a French pilot study[J]. Int J Methods Psychiatr Res, 2017, 26 (2): e1522.
doi: 10.1002/mpr.1522
28 Zheng L , Wang O , Hao S , et al. Development of an early-warning system for high-risk patients for suicide attempt using deep learning and electronic health records[J]. Transl Psychiatry, 2020, 10 (1): 72.
doi: 10.1038/s41398-020-0684-2
29 Bhak Y , Jeong HO , Cho YS , et al. Depression and suicide risk prediction models using blood-derived multi-omics data[J]. Transl Psychiatry, 2019, 9 (1): 262.
doi: 10.1038/s41398-019-0595-2
30 Pestian JP , Sorter M , Connolly B , et al. A machine learning approach to identifying the thought markers of suicidal subjects: a Prospective Multicenter Trial[J]. Suicide Life Threat Behav, 2017, 47 (1): 112- 121.
doi: 10.1111/sltb.12312
31 Haroz EE , Walsh CG , Goklish N , et al. Reaching those at highest risk for suicide: development of a model using machine learning methods for use with Native American Communities[J]. Suicide Life Threat Behav, 2020, 50 (2): 422- 436.
doi: 10.1111/sltb.12598
32 Just MA , Pan L , Cherkassky VL , et al. Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth[J]. Nat Hum Behav, 2017, 1, 911- 919.
doi: 10.1038/s41562-017-0234-y
33 Weng JC , Lin TY , Tsai YH , et al. An autoencoder and machine learning model to predict suicidal ideation with Brain structural imaging[J]. J Clin Med, 2020, 9 (3): 658.
doi: 10.3390/jcm9030658
34 Ryu S , Lee H , Lee DK , et al. Detection of suicide attempters among suicide ideators using machine learning[J]. Psychiatry Investig, 2019, 16, 588- 593.
doi: 10.30773/pi.2019.06.19
35 Kessler RC , Chalker SA , Luedtke AR , et al. A preliminary precision treatment rule for remission of suicide ideation[J]. Suicide Life Threat Behav, 2020, 50 (2): 558- 572.
doi: 10.1111/sltb.12609
36 Vioules MJ , Moulahi B , Aze J , et al. Detection of suicide-related posts in Twitter data streams[J]. IBM J Res Devel, 2018, 62 (1): 1- 12.
37 Braithwaite SR , Giraud-Carrier C , West J , et al. Validating machine learning algorithms for twitter data against established measures of suicidality[J]. JMIR Mental Health, 2016, 3 (2): e21.
doi: 10.2196/mental.4822
38 Barak-Corren Y , Castro VM , Nock MK , et al. Validation of an electronic health record-based suicide risk prediction modeling approach across multiple health care systems[J]. JAMA Netw Open, 2020, 3 (3): e201262.
doi: 10.1001/jamanetworkopen.2020.1262
39 Sanderson M , Bulloch AG , Wang JL , et al. Predicting death by suicide using administrative health care system data: can recurrent neural network, one-dimensional convolutional neural network, and gradient boosted trees models improve prediction performance?[J]. J Affect Disord, 2020, 264, 107- 114.
doi: 10.1016/j.jad.2019.12.024
40 Fernandes AC , Dutta R , Velupillai S , et al. Identifying suicide ideation and suicidal attempts in a psychiatric clinical research database using natural language processing[J]. Sci Rep, 2018, 8 (1): 7426.
doi: 10.1038/s41598-018-25773-2
[1] 赵思博,彭立,凌鸿翔. 农村老年人医疗保险参与和自杀风险的关系[J]. 山东大学学报 (医学版), 2022, 60(4): 113-118.
[2] 李献云,杨甫德. 自杀倾向的认知行为治疗[J]. 山东大学学报 (医学版), 2022, 60(4): 1-9.
[3] 申雨霏,赵美,胡宓. 有自杀意念中学生的求助意愿、求助行为现状及其相关因素[J]. 山东大学学报 (医学版), 2022, 60(4): 99-106.
[4] 徐小明,孔裔婷,刘川,明英,况利. 青少年和年轻成人自杀预警系统研究进展[J]. 山东大学学报 (医学版), 2022, 60(2): 69-74.
[5] 苏永刚,王睿,杨同卫. 健康中国视域下老年人群自杀的影响因素及预防对策[J]. 山东大学学报 (医学版), 2022, 60(2): 8-13.
[6] 贾存显,刘珍珍. 关注睡眠问题,预防青少年自伤[J]. 山东大学学报 (医学版), 2022, 60(2): 1-7.
[7] 姚志英,魏艳欣,汪心婷,张杰,贾存显. 农村居民自杀行为暴露与自杀未遂关系的研究[J]. 山东大学学报 (医学版), 2022, 60(1): 86-92.
[8] 王超,张艺琳,邹广顺,吕军城. 686名医学生有无自杀意念调查及影响因素分析[J]. 山东大学学报 (医学版), 2022, 60(1): 78-85.
[9] 毕凤英,闫冬勤,陈曦,罗丹. HIV感染者/艾滋病患者自杀死亡危险因素理论框架构建——基于扎根理论的定性研究[J]. 山东大学学报 (医学版), 2022, 60(1): 109-117.
[10] 姜震,孙静,邹雯,王唱唱,高琦. 基于两种机器学习算法的双相情感障碍患者自杀行为影响因素模型比较研究[J]. 山东大学学报 (医学版), 2022, 60(1): 101-108.
[11] 田瑶天,王宝,李叶琴,王滕,田力文,韩波,王翠艳. 基于可解释性心脏磁共振参数的机器学习模型预测儿童心肌炎的预后[J]. 山东大学学报 (医学版), 2021, 59(7): 43-49.
[12] 魏艳欣,汪心婷,刘宝鹏,李媛媛,张吉玉,贾存显. 山东省农村自杀未遂者自杀行为的聚类分析[J]. 山东大学学报 (医学版), 2021, 59(11): 108-113.
[13] 秦艺文,杨晓帆,魏艳欣,刘宝鹏,Bob Lew,贾存显. 大学生生命意义感在心理扭力和自杀行为风险间的中介作用[J]. 山东大学学报 (医学版), 2021, 59(11): 76-83.
[14] 张艺琳,王超,邹广顺,吕军城. 医学生生命意义感与自杀意念的关系[J]. 山东大学学报 (医学版), 2021, 59(11): 93-99.
[15] 陈擎仪,张烜,王娟,孙继伟,曹丹凤, 曹枫林. 妊娠期女性自杀意念的危险因素及其累积效应[J]. 山东大学学报 (医学版), 2021, 59(1): 91-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王焕亮,孙宝柱,杜洪玫,周长青,张丽. 不同麻醉监测指标调控异丙酚麻醉的比较[J]. 山东大学学报(医学版), 2006, 44(5): 471 -474 .
[2] 朱梅佳,韩巨,王新怡,鹿伟,王爱华,关心华,曹霞,曹秉振. 伴有皮层下梗死和白质脑病的常染色体显性遗传性脑动脉病临床病理研究[J]. 山东大学学报(医学版), 2006, 44(8): 834 -839 .
[3] 宋海岩,武玉玲,张艳萍. 牡蛎提取物对高温致神经管畸形中凋亡细胞的保护作用[J]. 山东大学学报(医学版), 2007, 45(2): 113 -116 .
[4] 王志刚,丁 璇,孙 鹏/sup>,王成伟,郝晓光,潘 顺 . 术前脑血管造影在血管内支架成形术治疗缺血性脑血管病中的应用[J]. 山东大学学报(医学版), 2007, 45(2): 146 -148 .
[5] 于慧1,2 ,陈少华1 ,赵家军2 ,高聆3
. 乙醇对人肝L02细胞糖原和GSK3β、PAMPK的影响[J]. 山东大学学报(医学版), 2009, 47(04): 75 -78 .
[6] 张向丽,刘凤英 . 血清TPA、 sVCAM-1与子痫前期发病关系的初步探讨[J]. 山东大学学报(医学版), 2007, 45(7): 705 -707 .
[7] 宋永红,马春红,吕红娟,朱传福,聂向民,王玫,刘艳,张萍 . 中国北方汉族人群HLA基因多态性研究[J]. 山东大学学报(医学版), 2007, 45(6): 546 -553 .
[8] 赵正斌1,薛双林2,张立婷1,李俊峰1,赵荣荣1,周海莲3,陈红1. 原花青素对瘦素诱导肝星状细胞增殖和TIMP-1产生的影响[J]. 山东大学学报(医学版), 2012, 50(7): 46 .
[9] 侯晓阳,卜培莉,张运,冯进波,刘春喜,李传保,郝明秀. 过氧化酶体增殖物激活受体α抑制血管紧张素Ⅱ促心肌纤维化作用的试验研究[J]. 山东大学学报(医学版), 2007, 45(7): 665 -668 .
[10] . SWI显示弥漫性轴索损伤病灶个数与GCS评分相关性的分析[J]. 山东大学学报(医学版), 2009, 47(10): 126 -129 .