您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2020, Vol. 58 ›› Issue (12): 1-7.doi: 10.6040/j.issn.1671-7554.0.2020.0781

• 基础医学 •    下一篇

两种阿霉素心力衰竭模型及心功能进展的评估

张淑莹1,武晓峰2,郭丽敏1,乔温1,彭洁琼3,李大庆1   

  1. 1. 中国教育部、卫生部心血管重构和功能研究重点实验室, 国家和山东省联合心血管病转化医学重点实验室, 山东大学齐鲁医院心内科, 山东 济南 250012;2. 肥城市人民医院心内科, 山东 肥城 271600;3. 济南大学山东省医学科学院医学与生命科学学院, 山东 济南 250200
  • 发布日期:2020-12-08
  • 通讯作者: 李大庆. E-mail:daqingli999@163.com
  • 基金资助:
    山东省自然科学基金(26010105201504)

Evaluation of two doxorubicin-induced heart failure models and changes of cardiac function

ZHANG Shuying1, WU Xiaofeng2, GUO Limin1, QIAO Wen1, PENG Jieqiong3, LI Daqing1   

  1. 1. The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China;
    2. Department of Cardiology, Peoples Hospital of Feicheng City, Feicheng 271600, Shandong, China;
    3. School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China
  • Published:2020-12-08

摘要: 目的 评估阿霉素心力衰竭动物模型的建模效果及其在不同实验阶段的心脏结构与功能改变。 方法 建立大鼠阿霉素心力衰竭动物模型,采用两种造模方法:(1) 阿霉素模型1组为腹腔内注射阿霉素,每次2.5 mg/(kg·只),2周内注射6次,累积剂量15 mg/kg,造模周期为4周;(2) 阿霉素模型2组6周内注射6次,造模周期为8周,其余相同。雄性Wistar大鼠24只,随机分为正常对照1组、阿霉素模型1组、正常对照2组、阿霉素模型2组,每组6只。超声心动图评估心脏结构和功能,苏木素-伊红(HE)染色评估心脏组织结构。 结果 超声心动图检测结果显示,阿霉素模型1组左室射血分数(LVEF)和左室短轴缩短率(LVFS)较正常对照1组差异有统计学意义(P=0.025,P=0.032)。HE染色2种阿霉素模型均存在细胞肥大、肌纤维纹理走向不规则,心肌细胞胞浆空泡化。评估心肌细胞间质纤维沉积面积,阿霉素模型1组高于正常对照1组(t=4.455,P=0.002),阿霉素模型2组与正常对照2组间差异有统计学意义(t=2.220,P=0.060)。阿霉素模型1组在实验中期、末期阶段心脏结构和功能呈动态改变。在整个实验周期中,心脏扩张明显,心脏左室收缩功能和舒张功能指标如二尖瓣血流速度、二尖瓣环心肌组织动度持续降低。右室功能指标如肺动脉峰流速及速度时间积分呈现先降低后升高的趋势。 结论 阿霉素模型1组建模成功。在整个实验周期,阿霉素模型1组心脏结构扩张,左室收缩功能和舒张功能持续降低。右室功能呈现实验中期降低、实验末期上调的动态变化。

关键词: 心力衰竭, 阿霉素, 动物模型, 超声心动图

Abstract: Objective To evaluate the effects of two doxorubicin-induced heart failure models and changes of cardiac structure and function at different experiment stages. Methods Two doxorubicin-induced heart failure models were constructed. In the first model, rats received intraperitoneal injection of a cumulative dose of 15 mg/kg doxorubicin 6 times in 2 weeks [2.5 mg/(kg·rat)] and the cycle lasted for 4 weeks. In the second model, rats received intraperitoneal injection of a cumulative dose of 15 mg/kg doxorubicin 6 times in 6 weeks [2.5 mg/(kg·rat)] and the cycle lasted for 8 weeks. A total of 24 male Wistar rats were randomly divided into normal control group 1, doxorubicin model group 1, normal control group 2 and doxorubicin model group 2, with 6 rats in each group. Cardiac structure and function were detected using transthoracic echocardiography. Histopathology was evaluated using haematoxylin and eosin(HE)staining. Results Echocardiography showed left ventricular ejection fraction(LVEF)and left ventricular fractional shortening(LVFS)in the doxorubicin model group 1 were significantly lower than those in normal control group 1(P=0.025, P=0.032). Stained with HE, tissue sections showed cardiomyocyte hypertrophy, irregular texture of muscle fibers, and intracellular vacuolation in both models. Doxorubicin model group 1 had significantly increased intercellular collagen deposition than normal control group 1(t=4.455, P=0.002), and doxorubicin model group 2 had significantly increased intercellular collagen deposition than normal control group 2(t=2.220, P=0.060). In doxorubicin model group 1, cardiac structure and function showed a dynamic development at the middle and end stages of the cycle. During the whole cycle, the heart obviously dilatated, left ventricular systolic and diastolic functional parameters including mitral flow and movement velocity of mitral valve kept decreasing, while the right ventricular functional parameters, such as pulmonary peak flow velocity and velocity time integral, reduced in the middle stage, but increased in the end stage. Conclusion The first doxorubicin model is successfully establishes. During the whole cycle, cardiac structure dilates, left ventricular systolic and diastolic function continuously worsened, while the right ventricular function decreases in the middle stage but mildly improves in the end stage.

Key words: Heart failure, Doxorubicin, Animal models, Echocardiography

中图分类号: 

  • R541.6+1
[1] Park JJ, Choi DJ. Current status of heart failure: global and Korea [J]. Korean J Intern Med, 2020, 35(3): 487-497.
[2] Riehle C, Bauersachs J. Small animal models of heart failure [J]. Cardiovasc Res, 2019, 115(13): 1838-1849.
[3] McGowan JV, Chung R, Maulik A, et al. Anthracycline chemotherapy and cardiotoxicity [J]. Cardiovasc Drugs Ther, 2017, 31(1): 63-75.
[4] Wang Y, Cui X, Wang Y, et al. Protective effect of miR378* on doxorubicin-induced cardiomyocyte injury via calumenin [J]. J Cell Physiol, 2018, 233(10): 6344-6351.
[5] Rahimi O, Kirby J, Varagic J, et al. Angiotensin-(1-7)reduces doxorubicin-induced cardiac dysfunction in male and female Sprague-Dawley rats through antioxidant mechanisms [J]. Am J Physiol Heart Circ Physiol, 2020, 318(4): H883-H894.
[6] Bai Y, Chen Q, Sun YP, et al. Sulforaphane protection against the development of doxorubicin-induced chronic heart failure is associated with nrf2 upregulation [J]. Cardiovasc Ther, 2017, 35(5). doi: 10.1111/1755-5922.12277.
[7] Carvalho EB, Ramos IPR, Nascimento AFS, et al. Echocardiographic measurements in a preclinical model of chronic chagasic cardiomyopathy in dogs: validation and reproducibility [J]. Front Cell Infect Microbiol, 2019, 9: 332. doi: 10.3389/fcimb.2019.00332.
[8] Gevaert AB, Shakeri H, Leloup AJ, et al. Endothelial senescence contributes to heart failure with preserved ejection fraction in an aging mouse model [J]. Circ Heart Fail, 2017, 10(6): e003806. doi: 10.1161/CIRCHEARTFAILURE.116.003806.
[9] Wu A. Heart failure [J]. Ann Intern Med, 2018, 169(10): 738. doi: 10.7326/AITC201806050.
[10] Bosch L, de Haan JJ, Bastemeijer M, et al. The transverse aortic constriction heart failure animal model: a systematic review and meta-analysis [J]. Heart Fail Rev, 2020. doi: 10.1007/s10741-020-09960-w.
[11] Janssen PML, Elnakish MT. Modeling heart failure in animal models for novel drug discovery and development [J]. Expert Opin Drug Discov, 2019, 14(4): 355-363.
[12] Bacmeister L, Schwarzl M, Warnke S, et al. Inflammation and fibrosis in murine models of heart failure [J]. Basic Res Cardiol, 2019, 114(3): 19. doi: 10.1007/s00395-019-0722-5.
[13] Katz MG, Fargnoli AS, Gubara SM, et al. Surgical and physiological challenges in the development of left and right heart failure in rat models [J]. Heart Fail Rev, 2019, 24(5): 759-777.
[14] Brenes-Castro D, Castillo EC, Vázquez-Garza E, et al. Temporal frame of immune cell infiltration during heart failure establishment: lessons from animal models [J]. Int J Mol Sci, 2018, 19(12): 3719. doi: 10.3390/ijms19123719.
[15] 黄明, 熊可, 李霄, 等. 心力衰竭动物模型的研究进展[J]. 天津中医药大学学报, 2019, 38(6): 534-540. HUANG Ming, XIONG Ke, LI Xiao, et al. Advances in animal models of heart failure [J]. Journal of Tianjin University of Traditonal Chinese Medicine, 2019, 38(6): 534-540.
[16] Li X, Xu G, Wei S, et al. Lingguizhugan decoction attenuates doxorubicin-induced heart failure in rats by improving TT-SR microstructural remodeling [J]. BMC Complement Altern Med, 2019, 19(1): 360. doi: 10.1186/s12906-019-2771-6.
[17] He SF, Jin SY, Wu H, et al. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt [J]. Toxicol Appl Pharmacol, 2015, 288(3): 349-358.
[18] Chan BYH, Roczkowsky A, Cho WJ, et al. MMP inhibitors attenuate doxorubicin cardiotoxicity by preventing intracellular and extracellular matrix remodeling [J]. Cardiovasc Res, 2020, cvaa017. doi: 10.1093/cvr/cvaa017.
[19] Cappetta D, Esposito G, Coppini R, et al. Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolicdysfunction [J]. Br J Pharmacol, 2017, 174(21): 3696-3712.
[20] Xia Y, Chen Z, Chen A, et al. LCZ696 improves cardiac function via alleviating drp1-mediated mitochondrial dysfunction in mice with doxorubicin-induced dilated cardiomyopathy [J]. J Mol Cell Cardiol, 2017, 108: 138-148. doi: 10.1016/j.yjmcc.2017.06.003.
[21] Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity [J]. Pharmacol Rev, 2004, 56(2): 185-229.
[22] 吕海辰, 夏云龙. 发展中的肿瘤心脏病学[J]. 中国医刊, 2019, 54(8): 816-819. LU Haichen, XIA Yunlong. Developing oncology cardiology [J]. Chinese Journal of Medicine, 2019, 54(8): 816-819.
[23] Lewis GA, Schelbert EB, Williams SG, et al. Biological phenotypes of heart failure with preserved ejection fraction [J]. J Am Coll Cardiol, 2017, 70(17): 2186-2200.
[24] Corremans R, Adão R, De-Keulenaer GW, et al. Update on pathophysiology and preventive strategies of anthracycline-induced cardiotoxicity [J]. Clin Exp Pharmacol Physiol, 2019, 46(3): 204-215.
[25] 于彦, 刘博, 徐惠波, 等. 益气泻肺方对阿霉素诱导心力衰竭大鼠心肌损伤的保护作用机制[J].中华中医药杂志, 2019, 34(5): 2051-2055. YU Yan, LIU Bo, XU Huibo, et al. Protective effect of Yiqi Xiefei formula on myocardial injury in rats with heart failure induced by adriamycin [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2019, 34(5): 2051-2055.
[26] Renu K, V-G_ A, P-B TP, et al. Molecular mechanism of doxorubicin-induced cardiomyopathy-an update [J]. Eur J Pharmacol, 2018, 818: 241-253. doi: 10.1016/j.ejphar.2017.10.043.
[27] Russo M, Guida F, Paparo L, et al. The novel butyrate derivative phenylalanine-butyramide protects from doxorubicin-induced cardiotoxicity [J]. Eur J Heart Fail, 2019, 21(4): 519-528.
[28] Dhingra R, Guberman M, Rabinovich-Nikitin I, et al. Impaired NF-κB signalling underlies cyclophilin D-mediated mitochondrial permeability transition pore opening in doxorubicin cardiomyopathy [J]. Cardiovasc Res, 2020, 116(6): 1161-1174.
[1] 胡玉敬,吴大勇,张文艳,边艳珠,魏强,田丛娜,常胜利. 放疗后肿瘤99Tcm-MNLS乏氧显像变化与乏氧诱导因子-1α表达的相关性[J]. 山东大学学报(医学版), 2017, 55(8): 30-34.
[2] 尹妮,杨关林,姜钧文,王春田,王凤耀,贾连群,高晓宇,潘嘉祥,李芹,李佳,冯元洁,高玉竹,周鹤,张哲. 巴马小型猪冠状动脉粥样硬化模型的评价方法[J]. 山东大学学报(医学版), 2017, 55(7): 1-5.
[3] 廉开礼,李炎,张娜,靳桂媛,刘素侠. TIPE3上调P-gp表达降低乳腺癌细胞对阿霉素的敏感性[J]. 山东大学学报(医学版), 2017, 55(5): 36-42.
[4] 姜蕴珊,谈红,李晓燕,苏莉,张国明,张红明,孟楠. 培哚普利对慢性心力衰竭患者血浆miR-423-5p的调控及对心功能的影响[J]. 山东大学学报(医学版), 2016, 54(8): 55-59.
[5] 许天一,吴萍,王爱玲,陈丽萍. 米力农雾化治疗小儿重症肺炎合并心力衰竭的疗效[J]. 山东大学学报(医学版), 2016, 54(7): 88-90.
[6] 王聪, 孙书珍, 甄军晖, 李倩, 许艺怀. CXCL16在阿霉素肾病小鼠中的表达及辛伐他汀对其的影响[J]. 山东大学学报(医学版), 2015, 53(9): 24-29.
[7] 刘霄岩. 米力农治疗难治性心力衰竭80例临床观察[J]. 山东大学学报(医学版), 2014, 52(S2): 61-61.
[8] 尹黎波, 李慧萍. 曲美他嗪治疗重症疾患并发 慢性心力衰竭患者的临床疗效[J]. 山东大学学报(医学版), 2014, 52(S2): 99-100.
[9] 曾林文, 吴鸣, 宗兵. 环磷酰胺联合多西他赛用于乳腺癌术后化疗的近期疗效观察[J]. 山东大学学报(医学版), 2014, 52(S1): 111-111.
[10] 周长学. 多巴酚丁胺联合参附注射液治疗扩张型心肌病重度心力衰竭(附典型病例1例)[J]. 山东大学学报(医学版), 2014, 52(S1): 132-133.
[11] 许艺怀1,孙书珍1,甄军晖2,李倩1,王聪1. CXCL16和ox-LDL在阿霉素肾病小鼠中的变化及意义[J]. 山东大学学报(医学版), 2014, 52(5): 68-72.
[12] 姜红梅1,2,陈文强1. 老年冠心病心衰患者运动康复治疗中心理干预的临床意义[J]. 山东大学学报(医学版), 2014, 52(4): 85-88.
[13] 孟祥继,庞琦,丁锋,辛涛,杨洪安. 纹状体立体定向注射Taclo建立帕金森病大鼠模型[J]. 山东大学学报(医学版), 2014, 52(3): 16-18.
[14] 于健, 叶瑶, 黄漓莉, 刘晓玲, 莫如芬, 杨帆, 胡璟, 周英琼, 何永玲. 巴马小型猪1型糖尿病模型胰腺病理及生化指标的变化[J]. 山东大学学报(医学版), 2014, 52(12): 10-14.
[15] 张鹏飞, 徐晓娅, 姜曼, 毕玉莉, 许继映, 韩明勇. LPS通过PGE2-EP2信号传导通路诱导肺血管生成[J]. 山东大学学报(医学版), 2014, 52(10): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!