您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (11): 59-64.doi: 10.6040/j.issn.1671-7554.0.2016.1529

• 临床医学 • 上一篇    下一篇

双源CT Flash扫描在心血管源性气道狭窄患儿诊断中的临床应用

李媛媛1,王锡明1,王龙1,纪淙山2,段艳华1,程召平1,刘燕萍1,陈静1   

  1. 1.山东省医学影像学研究所, 山东 济南 250021;2.山东大学附属省立医院影像科, 山东 济南 250021
  • 收稿日期:2016-11-18 出版日期:2017-11-10 发布日期:2017-11-10
  • 通讯作者: 陈静. E-mail:s_d_chenjing@sina.com E-mail:s_d_chenjing@sina.com
  • 基金资助:
    国家自然科学基金(81371548);山东省医药卫生发展计划(2014WS0117);山东省自然科学基金(ZR2012HM006);山东省泰山学者计划

Application of flash spiral acquisition by dual-source CT in children with cardiovascular airway constriction

LI Yuanyuan1, WANG Ximing1, WANG Long1, JI Congshan2, DUAN Yanhua1,CHENG Zhaoping1, LIU Yanping1, CHEN Jing1   

  1. 1. Department of CT, Medical Imaging Research Institute, Jinan 250021, Shandong, China;
    2. Department of Imaging, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China
  • Received:2016-11-18 Online:2017-11-10 Published:2017-11-10

摘要: 目的 探讨双源CT Flash扫描模式在诊断先天性心脏病(先心病)引起气道狭窄病变中的应用价值。 方法 回顾性收集2013年1月至2015年12月行双源CT Flash扫描,经心脏大血管CTA结果诊断为心脏大血管直接压迫引起的气道狭窄患儿99例。其中男40例,女59例,1个月~16岁,平均22个月,平均体质量(10±7.7)kg。根据机器自动生成的剂量长度乘积(DLP),计算有效辐射剂量(ED)。由两名放射科医生采用5分法对图像质量进行总体评估。气管狭窄诊断标准指支气管管腔口径小于正常支气管管腔口径,利用多平面重组(MPR)及曲面重组(VR)图像准确显示狭窄段气道周围的解剖结构关系,明确造成气道狭窄的心外大血管畸形的责任病灶。按照引起小儿心血管源性气道狭窄的不同血管畸形类型进行归纳总结。同时,在肺窗和最小密度投影(MinIP)上观察患儿肺内继发病变的特点。 结果 99例患儿平均DLP(7.32±6.19)mGy·cm,平均ED(0.39±0.20)mSv。图像质量均满足诊断要求;两名放射科医师对图像质量的总体评价具有较高一致性(K=0.754, P<0.05)。各年龄段心血管源性气道狭窄患儿中,肺部病变发生率呈随年龄增加而降低的趋势(Z=-3.83, P<0.001)。99例共计104处狭窄被诊断为心血管源性气道狭窄,在造成气道狭窄的心血管畸形中,因肺动脉高压引起38例(36.5%)、主动脉缩窄引起32例(30.8%)、右位主动脉弓引起14例(13.5%)、无名动脉压迫12例(11.5%)、肺动脉吊带6例(5.8%)、双主动脉弓1例(1.0%)、左房大1例(1.0%)。并发肺内病变,包括肺磨玻璃样变36例,肺实变19例,肺不张7例,肺气肿66例。不同类型先心病引起的气道狭窄部位不同,差异有统计学意义(P<0.001)。其中先心病引起的气道狭窄以发生于Ⅲ段,即左主支气管较多。 结论 双源CT Flash一站式扫描能够同时对心血管和气管支气管情况准确诊断,为临床诊治提供依据。

关键词: 双源CT, Flash扫描, 辐射剂量, 先天性心脏病, 气道狭窄

Abstract: Objective To explore the application of flash spiral acquisition by dual-source CT in the diagnosis of congenital heart disease complicated with cardiovascular airway constriction. Methods Children suspected with cardiovascular airway compression underwent flash spiral acquisition by dual-source CT during Jan. 2013 and Dec. 2015, and 99 山 东 大 学 学 报 (医 学 版)55卷11期 -李媛媛,等.双源CT Flash扫描在心血管源性气道狭窄患儿诊断中的临床应用 \=-children were finally included in this study, including 40 males and 59 females. The mean age was 22 months and mean body weight was(10±7.7)kg. The dose length product(DLP)was recorded to calculate effective dose(ED). Images were analyzed by two experienced radiologists using a 5-grade scoring system subjectively with post-processing technique. The diagnostic criteria were adopted to determine airway constriction. Multiple planar reformation(MPR)and volume rendering(VR)were used to show the anatomic structures around the narrow segment, and to define the responsible anomalies and location of the airway constriction. The characteristics of pulmonary lesions were observed in lung window and minimum intensity projection(MinIP). Results The average DLP was(7.32±6.19)mGy·cm, and average ED was(0.39±0.20)mSv. All images were diagnosable. The two radiologists made good agreement(K=0.754, P<0.05). With different age groups, the younger the patients, the higher proportion of cardiovascular airway constriction and pulmonary anomalies(Z=-3.83, P<0.001). Of all 99 children, a total of 104 constrictions were diagnosed as tracheobronchial compression caused by vascular abnormalities, including pulmonary arterial hypertension in 38 cases(36.5%), coarctation of aorta in 32 cases(30.8%), right-sided aortic arch in 14 cases(13.5%), innominate artery tracheal compression in 12 cases(11.5%), pulmonary artery sling in 6 cases(5.8%), double aortic arch in 1 case(1.0%)and left atrial enlargement in 1 case(1.0%). Secondary pulmonary lesions were also detected, including ground glass opacity in 36 cases, consolidation in 19 cases, emphysema in 66 cases and post-obstructive pulmonary atelectasis in 7 cases. The difference between the different types of primary heart diseases and the locations of the airway constriction was statistically significant(P<0.001). Airway constrictions caused by congenital heart disease were most likely to occur on the left main bronchus. Conclusion Flash spiral acquisition by dual-source CT can diagnose congenital heart disease with airway compression simultaneously, and provide information for clinical diagnosis and treatment.

Key words: Dual-source CT, Congenital heart disease, Radiation dosage, Airway constriction, Flash scan

中图分类号: 

  • R445.3
[1] Singhal M, Gupta P, Singh RS, et al. Cardiovascular causes of pediatric airway compression: A Pictorial Review[J]. Curr Probl Diagn Radiol, 2015, 44(6): 505-510.
[2] McElhinney DB, Reddy VM, Pian MS, et al. Compression of the central airways by a dilated aorta in infants and children with congenital heart disease[J]. Ann Thorac Surg, 1999, 67(4): 1130-1136.
[3] Xue B, Xu Z, Liang B, et al. One stage surgical correction of congenital tracheal stenosis complicated with congenital heart disease in infants and young children[J]. J Card Surg, 2015, 30(1): 97-103.
[4] Brenner D, Elliston C, Hall E, et al. Estimated risks of radiation-induced fatal cancer from pediatric CT[J]. AJR Am J Roentgenol, 2001, 176(2): 289-296.
[5] Jiao H, Xu Z, Wu L, et al. Detection of airway anomalies in pediatric patients with cardiovascular anomalies with low dose prospective ECG-gated dual-source CT[J]. PLoS One, 2013, 8(12): 82826.
[6] Duan Y, Wang X, Yang X, et al. Diagnostic efficiency of low-dose CT angiography compared with conventional angiography in peripheral arterial occlusions[J]. AJR Am J Roentgenol, 2013, 201(6): 906-914.
[7] 王荣品, 梁长虹, 黄美萍, 等. 64层螺旋CT在先天性心脏病伴气道狭窄手术前后的应用价值[J].临床放射学杂志, 2010, 29(5): 660-664.
[8] AI-Mousily F, Shifrin RY, Fricker FJ, et al. Use of 320-detector computed tomographic angiography for infants and young children with congenital heart disease[J]. Pediatr Cardiol, 2011, 32(4): 426-432.
[9] Nie P, Wang X, Cheng Z, et al. Accuracy, image quality and radiation dose comparison of high-pitch spiral and sequential acquisition on 128-slice dual-source CT angiography in children with congenital heart disease[J]. Eur Radiol, 2012, 22(10): 2057-2066.
[10] Goetti R, Feuchtner G, Stolzmann P, et al. High-pitch dual-source CT coronary angiography: systolic data acquisition at high heart rates[J]. Eur Radiol, 2010, 20(11): 2565-2571.
[11] 孙凯, 韩瑞娟, 赵瑞平, 等. 不同心率患者采用大螺距双源CT冠状动脉成像的图像质量及影响因素分析[J]. 中华放射学杂志, 2012, 46(9): 773-778.
[12] Han BK, Lindberg J, Grant K, et al. Accuracy and safety of high pitch computed tomography imaging in young children with complex congenital heart disease[J]. Am J Cardiol, 2011, 107(10): 1541-1546.
[13] Lell MM, May M, Deak P, et al. High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography[J]. Invest Radiol, 2011, 46(2): 116-123.
[14] Burckel LA, Defez D, Chaillot PF, et al. Use of an automatic recording system for CT doses: evaluation of the impact of iterative reconstruction on radiation exposure in clinical practice[J]. Diagn Interv Imaging, 2015, 96(3): 265-272.
[15] Greffier J, Macri F, Larbi A, et al. Dose reduction with iterative reconstruction: Optimization of CT protocols in clinical practice[J]. Diagn Interv Imaging, 2015, 96(5): 477-486.
[16] Patent A, Frush DP. Dose reduction in paediatric MDCT: general principles[J]. Clinical Radiology, 2007, 62(6): 507-517.
[17] McLaren CA, Elliott MJ, Roebuck DJ. Vascular compression of the airway in children[J]. Paediatr Respir Rev, 2008, 9(2): 85-94.
[18] Wang CC, Chen SJ, Wu ET, et al. Lower airway anomalies in children with CATCH 22 syndrome and congenital heart disease[J]. Pediatr Pulmonol, 2013, 48(6): 587-591.
[19] Tann OR, Muthurangu V, Young C, et al. Cardiovascular CT imaging in congenital heart disease[J]. Progress in Pediatric Cardiology, 2010, 28: 21-27.
[20] Healy F, Hanna BD, Zinman R. Pulmonary complications of congenital heart disease[J]. Paediatr Respir Re, 2012, 13(1): 10-15.
[1] 金发光. 良性中心气道狭窄诊治规范的理解与认识[J]. 山东大学学报(医学版), 2017, 55(4): 7-13.
[2] 潘艳艳,孙永超,赵翠芬,孔清玉. 波生坦治疗婴儿先心病合并肺动脉高压的临床观察[J]. 山东大学学报(医学版), 2016, 54(2): 53-56.
[3] 文芳静,史小武. 气道支架置入术治疗恶性气道狭窄伴一侧肺通气的临床研究[J]. 山东大学学报(医学版), 2016, 54(12): 62-66.
[4] 史小武, 赵苏. 喉罩通气下冷冻联合球囊扩张治疗严重良性中央气道狭窄的临床研究[J]. 山东大学学报(医学版), 2014, 52(11): 68-72.
[5] 张巍1,2,李士雪1,李连波2,于夕荣2. 医院PET-CT中心18F正电子放射性药物生产及使用中工作人员的辐射剂量监测[J]. 山东大学学报(医学版), 2012, 50(12): 126-129.
[6] 张洪宇,王为新,乔衍礼. 外科手术治疗主动脉缩窄39例报告[J]. 山东大学学报(医学版), 2011, 49(9): 160-.
[7] 李刚1,2,马祥兴3,张化一2,田本祥2,韩武师2,于德新3,尉从新3. 双源CT仿真内镜技术评估胸主动脉夹层破口的价值[J]. 山东大学学报(医学版), 2011, 49(4): 98-102.
[8] 刘义敏,王辉,杨宇强,毕思明,徐惠,刘春晓,郭锐. 完全性肺静脉异位引流的围手术期治疗(附30例报告)[J]. 山东大学学报(医学版), 2011, 49(1): 129-130.
[9] 吕建利1,伊迎春1,韩波1,张建军1,庄建新1,孙毅平1,赵立健1,王锡明2,段艳华2,王安彪3,李红昕3 . 双源螺旋CT在小儿先天性心脏病诊断中的应用价值[J]. 山东大学学报(医学版), 2010, 48(7): 77-82.
[10] 聂敏1,陈锋2,王敏1,王涛1,柳澄1. 双源CT双能量肺动脉成像在肺动脉栓塞中的应用[J]. 山东大学学报(医学版), 2010, 48(1): 127-130.
[11] 张爱华 杨达宽. 持续超滤在婴幼儿体外循环手术中的临床应用[J]. 山东大学学报(医学版), 2009, 47(5): 99-101.
[12] 石广永,张供,李跃华. 改良超滤在婴幼儿心内直视手术中的临床应用[J]. 山东大学学报(医学版), 2008, 46(6): 628-630.
[13] 张坤,王振先,夏伟,孙若鹏,李福海,王一彪,郝芳之 . 先天性心脏病患儿心理学特点的对照研究[J]. 山东大学学报(医学版), 2008, 46(5): 516-519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑敏,郝跃伟,刘雪平,赵婷婷. 血小板膜糖蛋白Ibα基因HPA-2、Kozak序列多态性与脑梗死的相关性研究[J]. 山东大学学报(医学版), 2008, 46(3): 292 -295 .
[2] 方英立,马玉燕,刘锡梅,周文 . 急诊剖宫产患者围手术期替硝唑合理应用[J]. 山东大学学报(医学版), 2007, 45(10): 995 .
[3] 姜红菊,李润智,王营,徐冬梅,张梅,张运,李继福 . 冠状动脉粥样硬化斑块形态及介入治疗与MMP-9的关系[J]. 山东大学学报(医学版), 2008, 46(10): 966 -970 .
[4] 张杰,李振华,孙晋浩,暴丽华,刘岳鹏. 恒定磁场对Schwann细胞氧化损伤的保护作用[J]. 山东大学学报(医学版), 2007, 45(3): 229 -232 .
[5] 王术芹,齐 峰,吴剑波,孙宝柱. 罗哌卡因对大鼠离体主动脉收缩作用的钙离子调节机制[J]. 山东大学学报(医学版), 2008, 46(8): 773 -776 .
[6] 滕学仁,赵永生,胡光亮,周伦,李建民 . 两种方法保存同种异体髌腱移植重建膝关节交叉韧带的光镜电镜观察[J]. 山东大学学报(医学版), 2008, 46(10): 945 -950 .
[7] 李明霞,王学禹 . 儿童急性播散性脑脊髓炎31例临床与MRI特点[J]. 山东大学学报(医学版), 2008, 46(8): 828 -830 .
[8] . Graves病131治疗后1年内早发甲减影响因素分析[J]. 山东大学学报(医学版), 2009, 47(9): 5 -6 .
[9] 牛瑞,刘波,邵明举,王伟 . 非小细胞肺癌区域淋巴结中肺组织特异性基因的表达与预后的关系[J]. 山东大学学报(医学版), 2007, 45(9): 884 -885 .
[10] 袁吴敏,赵志伦,王洁贞 . 吸烟和饮酒与颅内肿瘤关系的Meta分析[J]. 山东大学学报(医学版), 2006, 44(11): 1146 -1149 .