山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (9): 41-45.doi: 10.6040/j.issn.1671-7554.0.2016.1656
秦鲁敏,孙爱友,王倩文,高景文,魏东芝
QIN Lumin, SUN Aiyou, WANG Qianwen, GAO Jingwen, WEI Dongzhi
摘要: 目的 建立一种高残糖-pH反复重碱化震荡发酵(F4)策略,提高乳酸片球菌素(pediocin)的发酵效价。 方法 在发酵的第一阶段采用间歇发酵,初始葡萄糖浓度为8.8 g/L;待发酵液中的残留葡萄糖浓度低于2 g/L时开始第二阶段发酵;在第二阶段,使发酵液中的残糖浓度始终维持在20 g/L左右,同时,每隔6 h将发酵液的pH值调到6.5,维持pH值重碱化震荡。 结果 由F4策略发酵产生的pediocin单位效价是对照策略F1和F2的3倍、F3的1.7倍,达到24 000 AU/mL。 结论 F4策略既能维持菌体的稳定生长,又可大量积累pediocin,适用于大规模生产pediocin的补料流加。
中图分类号:
[1] Papagianni M, Anastasiadou S. Pediocin: the bacteriocins of pediococci. sources, production, properties and applications[J]. Microb Cell Fact, 2009, 8(3): 1-16. [2] Dobson A, Cotter PD, Ross RP, et al. Bacteriocin production: a probiotic trait?[J]. Appl Environ Microb, 2012, 78(1): 1-6. [3] Cotter PD, Ross RP, Hill C. Bacteriocins-a viable alternative to antibiotics?[J]. Nat Rev Microbiol, 2013, 11(2): 95-105. [4] Kaur S, Kaur S. Bacteriocins as potential anticancer agents[J]. Front Pharmacol, 2015, 6: 1-11. [5] De Vuyst L, Leroy F. Bacteriocins from lactic acid bacteria: production, purification, and food applications[J]. J Mol Microbiol Biotechnol, 2007, 13(4): 194-199. [6] Barbosa AA, Mantovani HC, Jain S. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products[J]. Crit Rev Biotechnol, 2017, 3: 1-13. [7] Kumar K, Kaur K, Shahi AK, et al. Antilisterial, antimicrobial and antioxidant effects of pediocin and Murraya koenigii berry extract in refrigerated goat meat emulsion[J]. LWT-Food Sci Technol, 2017, 79: 135-144. [8] Jack RW, Wan J, Gordon J, et al. Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126[J]. Appl Environ Microb, 1996, 62(8): 2897-2903. [9] Guyonnet D, Fremaux C, Cenatiempo Y, et al. Method for rapid purification of class IIa bacteriocins and comparison of their activities[J]. Appl Environ Microb, 2000, 66(4): 1744-1748. [10] Jasniewski J, Cailliezgrimal C, Gelhaye E, et al. Optimization of the production and purification processes of carnobacteriocins Cbn BM1 and Cbn B2 from Carnobacterium maltaromaticum CP5 by heterologous expression in Escherichia coli[J]. J Microbiol Meth, 2008, 73(1): 41-48. [11] Cabo ML, Murado MA, González MAP, et al. Effects of aeration and pH gradient on nisin production: a mathematical model[J]. Enzyme Microb Tech, 2001, 29(4-5): 264-273. [12] Horn N, Martinez MI, Martinez JM, et al. Production of pediocin PA-1 by Lactococcus lactis using the lactococcin a secretory apparatus[J]. Appl Environ Microb, 1998, 64(3): 818-823. [13] Horn N, Martinez MI, Martinez JM, et al. Enhanced production of pediocin PA-1 and coproduction of nisin and pediocin PA-1 by Lactococcus lactis[J]. Appl Environ Microb, 1999, 65(10): 4443-4450. [14] Horn N, Fernández A, Dodd HM, et al. Nisin-Controlled Production of Pediocin PA-1 and Colicin V in Nisin- and Non-Nisin-Producing Lactococcus lactis Strains[J]. Appl Environ Microb, 2004, 70(8): 5030-5032. [15] Reviriego C, Fernandez L, Kuipers OP, et al. Enhanced production of pediocin PA-1 in wild nisin- and non-nisin-producing Lactococcus lactis strains of dairy origin[J]. Int Dairy J, 2007, 17(5): 574-577. [16] Arqués JL, Rodríguez JM, Gasson MJ, et al. Immunity gene pedB enhances production of pediocin PA-1 in naturally resistant Lactococcus lactis strains[J]. J Dairy Sci, 2008, 91(7): 2591-2594. [17] 宋建民, 孙爱友, 魏东芝. 融合型乳酸片球菌素在大肠杆菌中的表达与纯化[J]. 南京理工大学学报(自然科学版), 2011, 35(2): 268-272. SONG Jianmin, SUN Aiyou, WEI Dongzhi. Expression and purification of fusion-typed pediocin PA-1 in Escherichia coli[J]. J Nanjing U Sci Techno(Nat Sci Ed), 2011, 35(2): 268-272. [18] Li R, Takala TM, Qiao M, et al. Nisin-selectable food-grade secretion vector for Lactococcus lactis[J]. Biotechnol Lett, 2011, 33(4): 797-803. [19] Back A, Borges F, Mangavel C, et al. Recombinant pediocin in Lactococcus lactis: increased production by propeptide fusion and improved potency by co-production with PedC[J]. Microb Biotechnol, 2016, 9(4): 466-477. [20] 王静, 周志江, 吕加平, 等. 发酵生产乳酸片球菌素的工业培养基及发酵条件优化[J]. 食品科技, 2014(11): 2-7. WANG Jing, ZHOU Zhijiang, LÜ Jiaping, et al. Optimization of industrial culture media and fermentation condition for pediocin production[J]. Food Science and Technology, 2014(11): 2-7. [21] 宋建民, 何凯红, 孙爱友, 等. 碳氮源平衡流加策略提高重组大肠杆菌表达融合型乳酸片球菌素的产率[J]. 华东理工大学学报(自然科学版), 2011, 37(2): 163-166. SONG Jianmin, HE Kaihong, SUN Aiyou, et al. Effect of carbon-nitrogen balance feeding strategy on growth of recombinant Escherichia coli and fusion-typed pediocin PA-1 expression[J]. J East China Univ Techno(Nat Sci Ed), 2011, 37(2): 163-166. [22] Guerra NP, Pastrana L. Influence of pH drop on both nisin and pediocin production by Lactococcus lactis and Pediococcus acidilactici[J]. Lett Appl Microbiol, 2003, 37(1): 51-55. [23] Guerra NP, Agrasar AT, Macias CL, et al. Modelling the fed-batch production of pediocin using mussel processing wastes[J]. Process Biochem, 2005, 40(3-4): 1071-1083. [24] Guerra NP, Bernárdez PF, Agrasar AT, et al. Fed-batch pediocin production by Pediococcus acidilactici NRRL B-5627 on whey[J]. Biotechnol Appl Biochem, 2005, 42(1): 17-23. [25] Guerra NP, Bernárdez PF, Castro LP. Fed-batch pediocin production on whey using different feeding media[J]. Enzyme Microb Tech, 2007, 41(3): 397-406. |
[1] | 刘文1,高聆2,于春晓1,王佳3,范右飞1,张媛1,管庆波1,赵家军1. 硫氢化钠对高浓度葡萄糖环境下原代人脐静脉内皮细胞的影响[J]. 山东大学学报(医学版), 2011, 49(7): 15-. |
|