您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (5): 43-48.doi: 10.6040/j.issn.1671-7554.0.2016.492

• 基础医学 • 上一篇    下一篇

有序胶原材料联合CBD-BDNF对大鼠脊髓损伤的修复作用

陈磊1,2,刘东晓1,李开鸣1,宋新强1,2,曾宪思1,2,蒋丽杰1   

  1. 1.信阳师范学院生命科学学院, 河南 信阳 464000;2.信阳师范学院大别山农业生物资源保护与利用研究院, 河南 信阳 464000
  • 收稿日期:2016-05-03 出版日期:2017-05-10 发布日期:2017-05-10
  • 通讯作者: 陈磊. E-mail:chenl_6789@163.com E-mail:chenl_6789@163.com
  • 基金资助:
    国家自然科学基金(81502312、U1204326);信阳师范学院博士科研启动基金(0201305);信阳师范学院2013年青年基金(2013-QN-068)

Uniaxial-channel collagen scaffolds loaded with CBD-BDNF improves the recovery of rat spinal cord injury

CHEN Lei1,2, LIU Dongxiao1, LI Kaiming1, SONG Xinqiang1,2, ZENG Xiansi1,2, JIANG Lijie1   

  1. 1. College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China;
    2. Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, Henan, China
  • Received:2016-05-03 Online:2017-05-10 Published:2017-05-10

摘要: 目的 联合有序胶原支架材料和胶原结合结构域-脑源性神经营养因子(CBD-BDNF)修复大鼠脊髓损伤。 方法 以大鼠脊髓半横断损伤模型观察有序材料联合CBD-BDNF对脊髓损伤的修复效果。大鼠分为3组:Control组即损伤后自动恢复组、Collagen组即损伤部位植入有序材料组和CBD-BDNF/collagen组(CBC组)即损伤部位植入有序胶原材料联合CBD-BDNF组。通过神经丝免疫荧光染色、BBB评分和斜板实验观察修复效果。 结果 体外实验发现,有序材料能够引导神经元细胞方向性延伸轴突;体内实验发现,CBC组再生神经丝阳性的神经突起数量明显比Control组和Collagen组多(P<0.05),且再生神经丝延伸具有方向性。CBC组大鼠术后9周BBB评分为8(7,13),明显高于Control组[1(1,1)]和Collagen组[2(1,2)](P<0.05)。CBC组大鼠斜板耐受角度也要高于Control组和Collagen组(P<0.05)。 结论 CBD-BDNF联合有序胶原支架材料促进脊髓损伤部位神经突起再生和方向性延伸,促进大鼠运动功能恢复,为临床上治疗脊髓横断损伤提供一定实验依据。

关键词: 有序材料, 脊髓损伤, 胶原结合结构域-脑源性神经营养因子, BBB评分, 斜板实验

Abstract: Objective To explore the efficacy of uniaxial guidance collagen scaffolds loaded with collagen binding domain-brain derived neurotrophic factor(CBD-BDNF)in the repair of rat spinal cord injury(SCI). Methods Rat hemisection SCI models were established and divided into 3 groups: control group, collagen group, and CBD-BDNF/collagen(CBC)group. Nerve fiber immunofluorescence staining, BBB score, and inclined plate test were adopted to evaluate the repair efficacy. Results Axons grew through collagen scaffolds in linear fashion in vitro. In animal experiments, CBC group displayed more regenerated neurofilament with linear direction than the other two groups(P<0.05). Nine weeks after implantation, the BBB score of CBC group reached 8(7, 13), significantly higher than the control group[1(1, 1)] and collagen group[2(1, 2)],(P<0.05). Inclined plane results also showed significant improvement of functional recovery after SCI in CBC group than the other two groups(P<0.05). Conclusion Collagen scaffolds loaded with CBD-BDNF significantly improves the SCI recovery evaluated by the BBB scale, inclined plane test and immunohistochemical staining with antineurofilament antibody, which suggests that uniaxial guidance 山 东 大 学 学 报 (医 学 版)55卷5期 -陈磊,等.有序胶原材料联合CBD-BDNF对大鼠脊髓损伤的修复作用 \=-collagen scaffolds loaded with CBD-BDNF may serve as an effective strategy for SCI repair.

Key words: Spinal cord injury, Collagen binding domain-brain derived neurotrophic factor, BBB score, Inclined plane score, Uniaxial guidance collagen scaffolds

中图分类号: 

  • R651.2
[1] Riblett BW, Francis NL, Wheatley MA, et al. Ice-templated scaffolds with microridged pores direct DRG neurite growth[J]. Adv Funct Mater, 2012, 22(23): 4920-4923.
[2] Saglam A, Perets A, Canver AC, et al. Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair[J]. J Mol Neurosci, 2013, 49(2): 334-346.
[3] Ukegawa M, Bhatt K, Hirai T, et al. Bone marrow stromal cells combined with a honeycomb collagen sponge facilitate neurite elongation in vitro and neural restoration in the hemisected rat spinal cord[J]. Cell Transplant, 2014, 24(7): 1283-1297.
[4] Cholas RH, Hsu HP, Spector M. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model[J]. Biomaterials, 2012, 33(7): 2050-2059.
[5] Weishaupt N, Blesch A, Fouad K. BDNF: the career of a multifaceted neurotrophin in spinal cord injury[J]. Exp Neurol, 2012, 238(2): 254-264.
[6] Smith PA. BDNF: no gain without pain?[J]. Neuroscience, 2014, 283: 107-123.
[7] Han Q, Sun W, Lin H, et al. Linear ordered collagen scaffolds loaded with collagen-binding brain-derived neurotrophic factor improve the recovery of spinal cord injury in rats[J]. Tissue Eng Part A, 2009, 15(10): 2927-2935.
[8] Li X, Xiao Z, Han J, et al. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair[J]. Biomaterials, 2013, 34(21): 5107-5116.
[9] Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats[J]. J Neurotrauma, 1995, 12(1): 1-21.
[10] Kim M, Park SR, Choi BH. Biomaterial scaffolds used for the regeneration of spinal cord injury(SCI)[J]. Histol Histopathol, 2014, 29(11): 1395-1408.
[11] Haggerty AE, Oudega M. Biomaterials for spinal cord repair[J]. Neurosci Bull, 2013, 29(4): 445-459.
[12] Wang N, Zhang S, Zhang AF, et al. Sodium hyaluronate-CNTF gelatinous particles promote axonal growth, neurogenesis and functional recovery after spinal cord injury[J]. Spinal Cord, 2014, 52(7): 517-523.
[13] Davidenko N, Gibb T, Schuster C, et al. Biomimetic collagen scaffolds with anisotropic pore architecture[J]. Acta Biomater, 2012, 8(2): 667-676.
[14] Sridharan R, Reilly RB, Buckley CT. Decellularized grafts with axially aligned channels for peripheral nerve regeneration[J]. J Mech Behav Biomed Mater, 2015, 41: 124-135.
[15] Francis NL, Hunger PM, Donius AE, et al. An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering[J]. J Biomed Mater Res A, 2013, 101(12): 3493-3503.
[16] Francis NL, Hunger PM, Donius AE, et al. Strategies for neurotrophin-3 and chondroitinase ABC release from freeze-cast chitosan-alginate nerve-guidance scaffolds[J]. J Tissue Eng Regen Med,2017,11(1)285-294.
[17] Stokols S, Tuszynski MH. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury[J]. Biomaterials, 2006, 27(3): 443-451.
[18] Shi Q, Gao W, Han X, et al. Collagen scaffolds modified with collagen-binding bFGF promotes the neural regeneration in a rat hemisected spinal cord injury model[J]. Sci China Life Sci, 2014, 57(2): 232-240.
[19] Altinova H, Mollers S, Fuhrmann T, et al. Functional improvement following implantation of a microstructured, type-I collagen scaffold into experimental injuries of the adult rat spinal cord[J]. Brain Res, 2014, 1585: 37-50.
[20] 徐旭东. 多孔性壳聚糖-胶原材料促进神经纤维生长的实验研究[J]. 山东大学学报(医学版), 2011, 49(8): 45-47. XU Xudong. Chitosan-collagen biomaterial promotes the growth of neural fibers of the sciatic nerve[J]. Journal of Shandong University(Health Sciences), 2011, 49(8): 45-47.
[21] Autry AE,Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders[J]. Pharmacol Rev, 2012, 64(2): 238-258.
[22] Han S, Wang B, Jin W, et al. The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine[J]. Biomaterials, 2015, 41: 89-96.
[23] Han Q, Jin W, Xiao Z, et al. The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody[J]. Biomaterials, 2010, 31(35): 9212-9220.
[1] 刘东,朱冬昀,彭长亮,张程,赵杰,高春正. 脊髓损伤修复的复合透明质酸水凝胶支架的构建及其评价[J]. 山东大学学报(医学版), 2017, 55(9): 53-59.
[2] 李红志,刘静,宋岩,迟令懿,刘玉光. 利拉鲁肽对脊髓损伤修复作用的探讨[J]. 山东大学学报(医学版), 2016, 54(4): 1-5.
[3] 牟乐明1,孙占胜1,王伯珉1,高平2,初向全3. 骨髓间充质干细胞移植对脊髓损伤大鼠Toll样受体4表达的影响[J]. 山东大学学报(医学版), 2014, 52(1): 37-41.
[4] 李旭,秦东京,曹新山,姜兴岳,张迪,王静. 无骨折脱位型颈脊髓损伤DTI征象与JOA评分的相关性[J]. 山东大学学报(医学版), 2013, 51(1): 83-87.
[5] 张慧,郭雨霁,郝爱军,马保华. 粒细胞集落刺激因子对急性脊髓损伤中小胶质细胞的作用[J]. 山东大学学报(医学版), 2012, 50(5): 10-.
[6] 刘杨,苗宇船. 滋补脾阴方药对大鼠脊髓损伤后脑源性神经营养因子表达的影响[J]. 山东大学学报(医学版), 2012, 50(10): 33-36.
[7] 刘晓阳,孙建民,崔新刚,蒋振松. 鞘内注射VEGF对大鼠脊髓损伤后神经纤维和神经元的保护作用[J]. 山东大学学报(医学版), 2011, 49(4): 38-42.
[8] 赵伟. 电针对脊髓损伤后硫酸软骨素蛋白多糖表达的影响[J]. 山东大学学报(医学版), 2011, 49(3): 73-.
[9] 赵伟. 电针对脊髓损伤后硫酸软骨素蛋白多糖表达的影响[J]. 山东大学学报(医学版), 2011, 49(3): 73-.
[10] 朱俊德1,余资江1,刘鲜林2,常傲霜2. 大鼠脊髓全横断损伤后不同时间的组织改变[J]. 山东大学学报(医学版), 2011, 49(1): 43-47.
[11] 刘洋,贾堂宏,龚维明,宁斌,郭舒亚,宋宏亮,徐鹏,张涛,张来波
. 脊髓损伤后大鼠水钠代谢紊乱动物模型的建立[J]. 山东大学学报(医学版), 2009, 47(03): 53-55.
[12] 侯勇,聂林,吴琦,邵军,吕丽红 . 兔急性脊髓损伤后磁刺激运动诱发电位与病理变化的相关性[J]. 山东大学学报(医学版), 2008, 46(9): 855-858.
[13] 蔡中续,李玉华,祁磊,潘新. 嗅粘膜源性嗅鞘细胞移植联合NGF对脊髓损伤的修复[J]. 山东大学学报(医学版), 2007, 45(5): 470-473.
[14] 谢晓,高建新,刘克敬,禹卉,杨贵忠 . 大鼠脊髓损伤后坐骨神经电生理学以及损伤脊髓GAP-43蛋白表达的变化[J]. 山东大学学报(医学版), 2007, 45(5): 474-477.
[15] 胡 魁,刘培来,张元凯,丁 明,周 磊,李 明. 急性脊髓损伤后自主神经异常反射与降钙素基因相关肽的相关性研究[J]. 山东大学学报(医学版), 2007, 45(4): 397-400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!