您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (2): 74-78.doi: 10.6040/j.issn.1671-7554.0.2015.373

• 基础医学 • 上一篇    下一篇

干酪乳酸杆菌代谢物对白假丝酵母菌生物被膜的体外抑菌效果及分子机制

冯凡,胡晓燕,吴伟芳,孙筱林,孙允东,曹倩,肖颖,闫世坤,史培堃,曾贝妮,周亚滨   

  1. 山东大学医学院微生物学教研室, 山东 济南 250012
  • 收稿日期:2015-04-13 出版日期:2017-02-10 发布日期:2017-02-10
  • 通讯作者: 周亚滨. E-mail:zyb@sdu.edu.cn E-mail:zyb@sdu.edu.cn
  • 基金资助:
    山东省自然科学基金(ZR2009CM073)

Antifungal effects and relevant mechanisms of metabolites of Lactobacillus casei against Candida albicans biofilms in vitro

FENG Fan, HU Xiaoyan, WU Weifang, SUN Xiaolin, SUN Yundong, CAO Qian, XIAO Ying, YAN Shikun, SHI Peikun, ZENG Beini, ZHOU Yabin   

  1. Department of Medical Microbiology, Medical School of Shandong University, Jinan 250012, Shandong, China
  • Received:2015-04-13 Online:2017-02-10 Published:2017-02-10

摘要: 目的 研究干酪乳酸杆菌代谢物对体外白假丝酵母菌生物被膜的抑菌作用及其机制。 方法 通过萃取、蒸馏的方式浓缩干酪乳酸杆菌代谢物。采用甲基四氮盐(XTT)减低法测定干酪乳酸杆菌代谢物对白假丝酵母菌YEM30游离态及生物被膜态的最小抑菌浓度(MIC80),定量检测干酪乳酸杆菌代谢物对白假丝酵母菌体外代谢活动的影响,观察白假丝酵母菌形态学的转变,并通过双向凝胶电泳(2-DE)对比干酪乳酸杆菌代谢物处理前后白假丝酵母菌蛋白的表达差异。 结果 干酪乳酸杆菌代谢物对白假丝酵母菌的游离态、生物被膜态的最小抑菌稀释倍数分别为1∶256和1∶128。稀释倍数为1∶256的干酪乳酸杆菌代谢物可以明显干扰白假丝酵母菌酵母相向菌丝相的转化。比较双向电泳图谱上获得6个显著蛋白斑点,对其中的4个进行鉴定,结果显示在干酪乳酸杆菌代谢物的刺激下,烯醇酶、苹果酸脱氢酶、泛素连接酶表达升高,己糖激酶表达下降。 结论 干酪乳酸杆菌代谢物对体外白假丝酵母菌生物被膜具有抑制作用。

关键词: 抑菌作用, 干酪乳酸杆菌代谢物, 生物被膜, 双向电泳, 白假丝酵母菌

Abstract: Objective To detect the antifungal effects and relevant mechanisms of metabolites of Lactobacillus casei against Candida albicans biofilms in vitro. Methods Metabolites of Lactobacillus casei were obtained by extraction and distillation. MIC80 of metabolites of Lactobacillus casei against planktonic cells and biofilms were determined with the tetrazolium salt(XTT)reduction assay. The metabolic activity of Candida albicans biofilms against metabolites of Lactobacillus casei was assessed quantitatively. Yeast-to-hypha morphological transition was examined qualitatively with inverted microscope. Two-dimensional gel electrophoresis(2-DE)was used to search differentially expressed protein spots against metabolites of Lactobacillus casei-treated Candida albicans. Results MIC80 of metabolites of Lactobacillus casei against Candida albicans planktonic cells and biofilms were 1∶256 and 1∶128, respectively. When the dilution ratio was 1∶256, metabolites of Lactobacillus casei blocked the yeast-to-hypha transition. Compared with six significant protein spots achieved from the 2-DE maps, four of them were indentified. The expressions of enolase, ubiquitin ligase and malate dehydrogenase were increased, while the expression of hexokinase was decreased under the stimulation of metabolites of Lactobacillus casei. Conclusion Metabolites of Lactobacillus casei can inhibit Candida albicans biofilms in vitro.

Key words: Candida albicans, Metabolite of Lactobacillus casei, Antifungal effects, Biofilm, Two-dimensional gel electrophoresis

中图分类号: 

  • R379.4
[1] Azie N, Neofytos D, Pfaller M, et al. The PATH(Prospective Antifungal Therapy)Alliance registry and invasive fungal infections: update 2012[J]. Diagn Microbiol Infect Dis, 2012, 73(4): 293-300.
[2] Ferreira AV, Prado CG, Carvalho RR, et al. Candida albicans and Non-C. albicans Candida Species: comparison of biofilm production and metabolic activity in biofilms, and putative virulence properties of isolates from hospital environments and infections[J]. Mycopathologia, 2013, 175(3-4): 265-272.
[3] Nett JE, Sanchez H, Cain MT, et al. Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation[J]. Eukaryot Cell, 2011, 10(12): 1660-1669.
[4] Bustamante CI. Treatment of Candida infection: a view from the trenches![J]. Curr Opin Infect Dis, 2005, 18(6): 490-495.
[5] Miceli MH, Diaz JA, Lee SA. Emerging opportunistic yeast infections[J]. Lancet Infect Dis, 2011, 11(2): 142-151.
[6] Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms[J]. Virulence, 2013, 4(2): 119-128.
[7] Flemming HC, Wingender J. The biofilm matrix[J]. Nat Rev Microbiol, 2010, 8(9): 623-633.
[8] Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms[J]. Clin Microbiol Rev, 2002, 15(2): 167-193.
[9] Ramage G, Vandewalle K, Wickes BL, et al. Characteristics of biofilm formation by Candida albicans[J]. Rev Iberoam Micol, 2001, 18(4): 163-170.
[10] Tournu H, Serneels J, Van Dijck P. Fungal pathogens research: novel and improved molecular approaches for the discovery of antifungal drug targets[J]. Curr Drug Targets, 2005, 6(8): 909-922.
[11] De Vuyst L, Schrijvers V, Paramithiotis S, et al. The biodiversity of lactic acid bacteria Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation[J]. Appl Environ Microbiol, 2002, 68(12): 6059-6069.
[12] 魏利杰,徐摇琳,王锦卓,等.乳酸杆菌代谢产物对阴道常见致病菌抑制作用的试验研究 [J]. 吉林医学, 2013, 34(13): 2475-2476.
[13] da Silva WJ, Seneviratne J, Parahitiyawa N, et al. Improvement of XTT assay performance for studies involving Candida albicans biofilms[J]. Braz Dent J, 2008, 19(4): 364-369.
[14] Jin Y, Samaranayake LP, Samaranayake Y, et al. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars[J]. Arch Oral Biol, 2004, 49(10): 789-798.
[15] Wayne PA. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard[M]. 3rd ed. Boston: Science Open Inc, 2008.
[16] Ramage G, Martinez JP, Lopez-Ribot JL. Candida biofilms on implanted biomaterials: a clinically significant problem[J]. FEMS Yeast Res, 2006, 6(7): 979-986.
[17] Ciofu O, Tolker-Nielsen T, Jensen PØ, et al. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients[J]. Adv Drug Deliv Rev, 2015, 85: 7-23.
[18] Vediyappan G, Rossignol T, dEnfert C. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans[J]. Antimicrob Agents Chemother, 2010, 54(5): 2096-2111.
[19] Montagnoli C, Sandini S, Bacci A, et al. Immunogenicity and protective effect of recombinant enolase of Candida albicans in a murine model of systemic candidiasis[J]. Med. Mycol, 2004, 42(4): 319-324.
[20] Shibasaki S, Aoki W, Nomura T, et al. Evaluation of Mdh1 protein as an antigenic candidate for a vaccine against candidiasis[J]. Biocontrol Sci, 2014, 19(1): 51-55.
[21] 张立,蔡钢强.白色念珠菌的生物被膜[J]. 国际检验医学杂志, 2006, 27(12): 1112-1113.
[22] Saville SP, Lazzell AL, Monteagudo C, et al. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection[J]. Eukaryot Cell, 2003, 2(5): 1053-1060.
[23] Lorenz MC, Bender JA, Fink GR. Transcriptional response of Candida albicans upon internalization by macrophages[J]. Eukaryot Cell, 2004, 3(5): 1076-1087.
[24] Schwartz DS, Larsh HW. Comparative activities of glycolytic enzymes in yeast and mycelial forms of Candida albicans[J]. Mycopathologia, 1982, 78(2): 93-98.
[25] Lu Y, Su C, Unoje O, et al. Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation[J]. PNAS, 2014, 111(5): 1975-1980.
[1] 王班琴1,秦兆宇2,柏淑美1,刘芙军3,李芸1,刘师莲1. 双向电泳中人血清蛋白样品不同处理方法的比较[J]. 山东大学学报(医学版), 2009, 47(11): 89-94.
[2] 秦延江,刘师莲,杨银荣,柏淑美,张旭华,邓小梅 . 中枢神经系统脱髓鞘疾病脑脊液蛋白质组学研究[J]. 山东大学学报(医学版), 2008, 46(1): 9-14.
[3] 江浩,姜淑敏,朱文敏,程爱红,李莹,姜广水 . 酚醛树脂用于牙齿点隙裂沟封闭对细菌的抑制作用[J]. 山东大学学报(医学版), 2007, 45(9): 903-905.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!