山东大学学报(医学版) ›› 2016, Vol. 54 ›› Issue (4): 17-24.doi: 10.6040/j.issn.1671-7554.0.2015.1024
李国华1,2,池恒1,邢慧敏2,唐吉友1
LI Guohua1,2, CHI Heng1, XING Huimin2, TANG Jiyou1
摘要: 目的 通过建立大鼠海马神经元氧糖剥夺(OGD)模型,探讨orexin-A(OXA)对缺氧状态海马神经元的作用及其潜在机制。 方法 Wistar大鼠海马神经细胞分为对照组、氧糖剥夺组(OGD组)、氧糖剥夺加OXA组(OGD+OXA组,包括OGD+OXA 1 nmol/L组、OGD+OXA 3 nmol/L组、OGD+OXA 10 nmol/L组、OGD+OXA 100 nmol/L组)、氧糖剥夺加U0126组(OGD+U0126组)和氧糖剥夺加OXA、U0126组(OGD+OXA +U0126组)。取原代海马神经元培养72 h后,氧糖剥夺以建立缺氧损伤模型,后分别加入不同终浓度的OXA(1、3、10、100 nmol/L),于48 h观察OXA对海马神经元凋亡率的影响;并利用U0126 阻滞ERK1/2通路,通过Western blotting及细胞凋亡率检测,探究OXA对海马神经元凋亡率影响的分子机制。 结果 与OGD组相比,OGD+OXA 3 nmol/L组、OGD+OXA 10 nmol/L组和OGD+OXA 100 nmol/L组的细胞凋亡率均显著增加(P<0.01);OGD+OXA 10 nmol/L组和OGD+OXA 100 nmol/L组的细胞凋亡率高于OGD+OXA 3 nmol/L组(P<0.01),而二者之间无统计学差异(P>0.05)。U0126预处理后,OGD+U0126组海马神经元的凋亡率明显低于OGD组(P<0.01);OGD+U0126+OXA组的海马神经元凋亡率明显低于OGD+OXA 100 nmol/L组(P<0.01)。 结论 高浓度OXA对海马神经元有损害作用,并加重缺氧状态下的神经元损害,其作用机制与OXA过度激活ERK1/2信号通路有密切关系。
中图分类号:
[1] de Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity[J]. Proc Natl Acad Sci U S A, 1998, 95(1): 322-327. [2] Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior[J]. Cell, 1998, 92(4):573-585. [3] Ohno K, Sakurai T. Orexin neuronal circuitry: role in the regulation of sleep and wakefulness[J]. Front Neuroendocrinol, 2008, 29(1): 70-87. [4] Ganjavi H, Shapiro CM. Hypocretin/Orexin: a molecular link between sleep, energy regulation, and pleasure[J]. J Neuropsychiatry Clin Neurosci, 2007, 19(4): 413-419. [5] Girault EM, Yi CX, Fliers E, et al. Orexins, feeding, and energy balance[J]. Prog Brain Res, 2012, 198: 47-64. [6] Sharf R, Sarhan M, Dileone RJ. Role of orexin/hypocretin in dependence and addiction[J]. Brain Res, 2010, 1314: 130-138. [7] Kukkonen JP. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012[J]. Am J Physiol Cell Physiol, 2013, 304(1): C2-C32. [8] Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions[J]. Br J Pharmacol, 2014, 171(2): 332-350. [9] Sakurai T. The role of orexin in motivated behaviours[J]. Nat Rev Neurosci, 2014, 15(11): 719-731. [10] Chen Q, de Leceal L, Hu Z. The hypocretin/orexin system: an increasingly important role in neuropsychiatry[J]. Med Res Rev, 2015, 35(1): 152-197. [11] Yang L, Zou B, Xiong X. Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice[J]. J Neurosci, 2013, 33(12): 5275-5284. [12] Arendt DH, Ronan PJ, Oliver KD. Depressive behavior and activation of the orexin/hypocretin system[J]. Behav Neurosci, 2013, 127(1): 86-94. [13] Sil'Kis IG. Possible mechanisms for orexin effects on the functioning of the hippocampus and spatial learning(analytical review)[J]. Zh Vyssh Nerv Deiat Im I P Pavlova, 2012, 62(4): 389-400. [14] Samuels BA, Hen R. Neurogenesis and affective disorders[J]. Eur J Neurosci, 2011, 33(6): 1152-1159. [15] Hattiangady B, Rao MS, Shetty AK. Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus[J]. Neurobiol Dis, 2004, 17(3): 473-490. [16] Hattiangady B, Rao MS, Shetty GA, et al. Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus[J]. Exp Neurol, 2005, 195(2): 353-371. [17] Sutula TP, Dudek FE. Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system[J]. Prog Brain Res, 2007, 163: 541-563. [18] Perederiy JV, Luikart BW, Washburn EK. Neural injury alters proliferation and integration of adult-generated neurons in the dentate gyrus[J]. J Neurosci, 2013, 33(11): 4754-4767. [19] Shetty AK, Hattiangady B. Concise review: prospects of stem cell therapy for temporal lobe epilepsy[J]. Stem Cells, 2007, 25(10): 2396-2407. [20] Ogawa S, Kitao Y, Hori O. Ischemia-induced neuronal cell death and stress response[J]. Antioxid Redox Signal, 2007, 9(5): 573-587. [21] Acharya MM, Hattiangady B, Shetty AK. Progress in neuroprotective strategies for preventing epilepsy[J]. Prog Neurobiol, 2008, 84(4): 363-404. [22] Pitkänen A, Immonen RJ, Gröhn OH, et al. From traumatic brain injury to posttraumatic epilepsy: what animal models tell us about the process and treatment options[J]. Epilepsia, 2009, 50(Suppl 2):21-29. [23] Ubhi K, Masliah E. Alzheimers disease: recent advances and future perspectives[J]. J Alzheimers Dis, 2013, 33(Suppl 1):S185-194. [24] Jorge RE, Acion L, Starkstein SE, et al. Hippocampal volume and mood disorders after traumatic brain injury[J]. Biol Psychiatry, 2007, 62(4): 332-338. [25] Potvin O, Allen K,Thibaudeau G, et al. Performance on spatial working memory tasks after dorsal or ventral hippocampal lesions and adjacent damage to the subiculum[J]. Behav Neurosci, 2006, 120(2): 413-422. [26] Hattiangady B, Kuruba R, Shetty AK. Acute seizures in old age leads to a greater loss of ca1 pyramidal neurons, an increased propensity for developing chronic tle and a severe cognitive dysfunction[J]. Aging Dis, 2011, 2(1): 1-17. [27] Nambu T, Sakurai T, Mizukami K, et al. Distribution of orexin neurons in the adult rat brain[J]. Brain Res, 1999, 827(1-2): 243-260. [28] Tang J, Chen J, Ramanjaneya M, et al. The signalling profile of recombinant human orexin-2 receptor[J]. Cell Signal, 2008, 20(9): 1651-1661. [29] Chen Q, de Lecea L, Hu Z, et al. The hypocretin/orexin system: an increasingly important role in neuropsychiatry[J]. Med Res Rev, 2015, 35(1): 152-197. |
[1] | 张春霞,邹存华,宋冬冬,余江. P38MAPK信号通路对卵巢癌中尿激酶型纤维蛋白酶原激活剂的影响[J]. 山东大学学报(医学版), 2016, 54(2): 68-74. |
[2] | 贾宗洋,张向宁,靳艳慧,魏美玲. PD98059联合顺铂对卵巢癌细胞增殖的影响[J]. 山东大学学报(医学版), 2013, 51(2): 27-32. |
[3] | 张文华,徐淑军, 江玉泉, 李刚, 李新钢, 周茂德,吴承远. 抗抑郁药物去甲替林在皮质神经元细胞氧糖剥夺模型中的保护作用及机制[J]. 山东大学学报(医学版), 2011, 49(4): 29-32. |
[4] | 林炜炜,刘德山,李伟,常萍. 脑神康胶囊对高糖环境下氧化损伤大鼠海马神经元HIF-1α表达的影响[J]. 山东大学学报(医学版), 2010, 48(1): 63-. |
|