您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2015, Vol. 53 ›› Issue (3): 50-55.doi: 10.6040/j.issn.1671-7554.0.2014.690

• 基础医学 • 上一篇    下一篇

转化生长因子-β1噬菌体模拟肽促进成纤维细胞增殖的效果

刘振中1, 姜笃银1, 王魏1, 宗宪磊2, 张基勋1, 刘磊1   

  1. 1. 山东大学第二医院整形外科, 山东 济南 250033;
    2. 中国医学科学院整形外科医院十六科, 北京 100144
  • 收稿日期:2014-10-13 修回日期:2015-01-14 出版日期:2015-03-10 发布日期:2015-03-10
  • 通讯作者: 姜笃银, E-mail:jdybs2@vip.163.com E-mail:jdybs2@vip.163.com
  • 基金资助:
    国家自然科学基金(81071560、81372074、81401608);山东省自然科学基金(ZR2010HQ010);山东省优秀中青年科学家科研奖励基金(BS2012YY010)

Proliferative effect of TGF-β1 phage model peptide on fibroblasts

LIU Zhenzhong1, JIANG Duyin1, WANG Wei1, ZONG Xianlei2, ZHANG Jixun1, LIU Lei1   

  1. 1. Department of Plastic Surgery, the Second Hospital of Shandong University, Jinan 250033, Shandong, China;
    2. Sixteenth Department of Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
  • Received:2014-10-13 Revised:2015-01-14 Online:2015-03-10 Published:2015-03-10

摘要: 目的 从噬菌体随机12肽库中筛选获得转化生长因子β1(TGF-β1)噬菌体模拟肽, 评估其促进人正常皮肤成纤维细胞增殖的效果。方法 以人TGF-β1单克隆抗体为靶, 生物淘选噬菌体模拟肽。选择其中一组与TGF-β1基因序列相似度最高的噬菌体模拟肽, 设定4组, 阴性对照组、噬菌体M13对照组、TGF-β1对照组和噬菌体模拟肽组。噻唑蓝(MTT)比色法定量测定活细胞数量以检测细胞的增殖。免疫荧光方法检测噬菌体模拟肽与成纤维细胞的亲和力。实时定量PCR分析方法检测成纤维细胞I型胶原蛋白(COL1)、Ⅲ型胶原蛋白(COL3)和结缔组织生长因子(CTGF)的mRNA表达水平。结果 共获得10种噬菌体模拟肽, 选择与TGF-β1基因序列相似度最高的第一组噬菌体模拟肽进行实验。MTT结果显示, 噬菌体模拟肽组能够促进成纤维细胞增殖(P<0.05)。免疫荧光结果显示, 噬菌体上的模拟肽, 而非噬菌体本身, 能够与成纤维细胞结合;实时定量PCR的结果显示, 48 h噬菌体模拟肽组COL1和COL3 mRNA的表达水平较阴性对照组和噬菌体M13对照组均明显增高(P<0.05), 而CTGF的mRNA表达水平较阴性对照组和噬菌体M13对照组2 d时明显增高(P<0.05), 3 d时表达有所降低(P<0.05)。结论 噬菌体模拟肽可能是通过调节CTGF的表达, 调节成纤维细胞的增殖。

关键词: 转化生长因子β1, 噬菌体展示技术, 细胞增殖, 成纤维细胞, 肽库

Abstract: Objective To isolate transforming growth factor-beta1 (TGF-β1) phage model peptides from phage display 12-mer peptide library, and to evaluate their proliferative effect on normal skin fibroblasts. Methods Phage 12-mer display peptide library was screened with monoclonal anti-human TGF-β1 to get specific phage model peptides. The model with sequence most similar to TGF-β1 was chosen and 4 groups were enrolled:negative control group, MP13 control group, TGF-β1 control group, and phage model peptide group. MTT assay was used for the quantitative determination of cellular proliferation. Immunofluorescence assay was employed to show the affinity of the model peptide on skin fibroblasts. Quantitative Real-time PCR analysis was carried out to detect the expressions of I collagen (COL1), III collagen (COL3) and connective tissue growth factor (CTGF). Results A total of 10 phage model peptides were obtained. The first one with sequence most similar to TGF-β1 was chosen. The MTT results showed that the phage model peptide could promote fibroblast proliferation (P<0.05). Immunofluorescence assay revealed that the model peptide on phages rather than phages could bind to the fibroblasts (P<0.05). The Real-time PCR analysis suggested that the relative expressions of COL1 and COL3 significantly increased in the model group than in the negative control group and M13 group (P<0.05). The expression of CTGF mRNA increased dramatically after treatment withphage model peptide, and reached the peak at 2 d (P<0.05). Conclusion The phage model peptide isolated from phage 12-mer display peptide library can promote the proliferation of normal skin fibroblasts by regulating the expression of CTGF.

Key words: Peptide library, Phage display, Transforming growth factor-beta1, Fibroblasts, Proliferation

中图分类号: 

  • R622
[1] Kolluri R. Management of venous ulcers[J]. Tech Vasc Interv Radiol, 2014, 17(2):132-138.
[2] Richmond NA, Maderal AD, Vivas AC. Evidence-based management of common chronic lower extremity ulcers[J]. Dermatol Ther, 2013, 26(3):187-196.
[3] Game FL, Hinchliffe RJ, Apelqvist J, et al. A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes[J]. Diabetes Metab Res Rev, 2012, 28(suppl 1):119-141.
[4] Barrientos S, Brem H, Stojadinovic O, et al. Clinical application of growth factors and cytokines in wound healing[J]. Wound Repair Regen, 2014, 22(5):569-578.
[5] Efron PA, Moldawer LL. Cytokines and wound healing:the role of cytokine and anticytokine therapy in the repair response[J]. J Burn Care Rehabi, 2004, 25(2):149-160.
[6] Raffetto JD. Which dressings reduce inflammation and improve venous leg ulcer healing. Phlebology[J]. 2014, 29(1suppl):157-164.
[7] 刘振中, 姜笃银, 蔡景龙, 等. 转化生长因子-β1噬菌体模拟肽抑制瘢痕疙瘩成纤维细胞增殖的实验研究[J]. 中华医学杂志, 2011, 91(38):2714-2718. LIU Zhenzhong, JIANG Duyin, CAI Jinglong, et al. Study of TGF-β1 phage model peptides on inhibiting keloid fibroblasts proliferation[J]. National Medical Journal of China, 2011, 91(38):2714-2718.
[8] 刘振中, 姜笃银, 蔡景龙, 等. 应用噬菌体随机十二肽库筛选TGF-β1相关模拟肽的实验研究[J]. 山东大学学报:医学版, 2011, 49(8):70-73. LIU Zhenzhong, JIANG Duyin, CAI Jinglong, et al. TGF-β1-related model peptides isolated form a phage display 12-mer peptide library[J]. Journal of Shandong University:Health Sciences, 2011, 49(8):70-73.
[9] Maroni D, Davis JS. Transforming growth factor beta 1 stimulates profibrotic activities of luteal fibroblasts in cows[J]. Biol Reprod, 2012, 87(5):127.
[10] Jiang L, Dai Y, Cui F, et al. Expression of cytokines, growth factors and apoptosis-related signal molecules in chronic pressure ulcer wounds healing[J]. Spinal Cord, 2014, 52(2):145-151.
[11] Ebrahimizadeh W, Rajabibazl M. Bacteriophage vehicles for phage display:biology, mechanism and application[J]. Curr Microbiol, 2014, 69(2):109-120.
[12] El Gazaerly H, Elbardisey DM, Eltokhy HM, et al. Effect of transforming growth factor beta 1 on wound healing in induced diabetic rats[J]. Int J Health Sci (Qassim), 2013, 7(2):160-172.
[13] Pakyari M, Farrokhi A, Maharlooei MK, et al. Critical role of transforming growth factor beta in different phases of wound healing[J]. Adv Wound Care (New Rochelle), 2013, 2(5):215-224.
[14] 王文婷, 单菲, 王晓川, 等. TGF-β1对糖尿病大鼠深II度烫伤创面愈合的影响[J]. 山东大学学报:医学版, 2011, 49(7):19-23. WANG Wenting, SHAN Fei, WANG Xiaochuan, et al. Effects of TGF-β1 on wound healing in diabetic rats with second-degree scald[J]. Journal of Shandong University:Health Sciences, 2011, 49(7):19-23.
[15] Finnson KW, McLean S, Di Guglielmo GM, et al. Dynamics of transforming growth factor beta signaling in wound healing and scarring[J]. Adv Wound Care (New Rochelle), 2013, 2(5):195-214.
[16] Weiss A, Attisano L. The TGFbeta superfamily signaling pathway[J]. Wiley Interdiscip Rev Dev Biol, 2013, 2(1):47-63.
[17] Barrientos S, Stojadinovic O, Golinko MS, et al. Growth factors and cytokines in wound healing[J]. Wound Repair Regen, 2008, 16(5):585-601.
[1] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7-14.
[2] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32-37.
[3] 史培堃,曾贝妮,吴伟芳,胡晓燕,马天加,周亚滨. Keap1在肾细胞癌中的表达及其作用[J]. 山东大学学报(医学版), 2017, 55(3): 94-99.
[4] 路真真,颜磊,张辉,张晓晖,赵兴波. 肿瘤微环境中TGF β-1对子宫内膜间质细胞活化的影响[J]. 山东大学学报(医学版), 2016, 54(9): 37-40.
[5] 牛纪媛,王方利,张瑞斌,高庆贞,贠萍,王琪,张珊,白雪,王小平. 局部外膜缓释西罗莫司对内瘘血管内膜增生的影响[J]. 山东大学学报(医学版), 2016, 54(8): 17-21.
[6] 陈燕, 刘娟, 陈翰祥, 张魏芳, 赵蔚明. miR-17对人包皮成纤维细胞衰老的影响[J]. 山东大学学报(医学版), 2015, 53(5): 55-59.
[7] 朱震坤, 周芹, 孙睿男, 徐欣. 热休克蛋白27在脂多糖介导的牙龈成纤维细胞损伤中的表达[J]. 山东大学学报(医学版), 2015, 53(3): 36-40.
[8] 涂燕, 李振江, 汤爱平, 费妍, 李慧慧, 李剑, 贺文凤. 干扰CD147表达抑制白血病细胞SHI-1增殖及移行[J]. 山东大学学报(医学版), 2014, 52(9): 1-5.
[9] 徐敏,庄向华,孙爱丽,倪一虹,孙福敦,陈诗鸿. 高糖对RSC96雪旺细胞的损伤机制[J]. 山东大学学报(医学版), 2014, 52(5): 44-48.
[10] 赵华1,徐洋洋2,鹿向东3,徐同江1 . Ki-67、PTTG、VEGF与垂体瘤卒中的相关性[J]. 山东大学学报(医学版), 2014, 52(5): 82-85.
[11] 周一冲1,张芮2,冯永强1,冯璋1,王一兵1. 神经生长因子前体在病理性瘢痕中的表达[J]. 山东大学学报(医学版), 2014, 52(5): 92-95.
[12] 周静, 郑亚冰, 闫莉, 常晓天, 赵珊, 荣风年. 雌激素及顺铂对卵巢癌细胞A2780PADI4的表达及其细胞增殖的影响[J]. 山东大学学报(医学版), 2014, 52(12): 30-34.
[13] 李静, 徐彤彤, 余帆. 原发性高血压患者血清IMD、CysC、FGF23与动脉粥样硬化的关系[J]. 山东大学学报(医学版), 2014, 52(10): 49-54.
[14] 王晓蕾1,郏雁飞2,郑燕2,刘华2,汪运山2. STAT3真核表达质粒的构建及对胃癌细胞增殖的影响[J]. 山东大学学报(医学版), 2013, 51(9): 45-49.
[15] 商睿1,2,唐梦熊2,3,刘琳1,2,丁文渊2,3,郝盼盼2,3,陈玉国2,3. ALK7在高糖诱导的心肌成纤维细胞转化及Ⅰ型胶原合成中的作用[J]. 山东大学学报(医学版), 2013, 51(8): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!