您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2011, Vol. 49 ›› Issue (2): 119-124.

• 论文 • 上一篇    下一篇

地理权重回归在人类群体空间遗传结构中的应用

李骁,薛付忠   

  1. 山东大学公共卫生学院流行病与卫生统计学研究所, 济南 250012
  • 收稿日期:2010-11-12 出版日期:2011-02-10 发布日期:2011-02-10
  • 通讯作者: 薛付忠(1964- ),男, 博士生导师,主要从事空间流行病学与空间遗传学理论方法及其应用的研究。E-mail:xuefzh@sdu.edu.cn
  • 作者简介:李骁(1985- ),男,硕士研究生,主要从事空间流行病学与空间遗传学理论方法及其应用的研究。
  • 基金资助:

    国家自然科学基金资助项目(30170527)。

Application of the geographically weighted regression model in  spatial genetic structure of the human population

LI Xiao, XUE Fu-zhong   

  1. Institute of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan 250012, China
  • Received:2010-11-12 Online:2011-02-10 Published:2011-02-10

摘要:

目的     探讨地理权重回归(GWR)模型在分析人类群体空间遗传结构影响因素中的应用。方法    利用全球血管紧张素转化酶(ACE)基因数据资料和气候监测数据,在因子分析和Kriging空间插值的基础上分别构建ACE基因D等位基因基因频率与气候因子之间的多元线性回归模型(全局模型)和GWR模型(局部模型),探讨基因频率与气候因子间的空间关系。结果    经证实性因子分析共提取了2个气候因子。全局模型显示,2个气候潜因子均与基因频率有关(P<0.01);GWR局部模型显示R2及参数估计值具有明显的空间变异性,其拟合效果优于全局模型。结论    GWR模型能够准确刻画人类群体空间遗传结构与气候因子间的空间变化性,较全局模型具有明显的优越性。

关键词: 空间遗传学;地理权重回归;空间自相关性;空间异质性

Abstract:

Objective    To explore the application of the geographically weighted regression(GWR) model in analyzing influencing factors of human population genetic structure. Methods    Using global ACE gene data and climate surveillance data, based on latent variable analysis and spatial statistical methods, synthesis factors from the climate variables were extracted by confirmatory factor analysis. Then spatial distribution of the ACE gene D allele frequency and the climate synthesis factors were estimated with the Kriging interpolation method. Finally the multiple linear regression model (global model) and GWR model (local model) were constructed to explore the relationship between the D allele frequency and the climate synthesis factors, respectively. Results     Two latent synthesis factors were extracted by confirmatory factor analysis. The multiple linear regression model showed that the two synthesis factors were both statistically related with D allele frequency (P<0.01). The local R2 and parameter estimation of each spatial unit of the GWR model displayed significant spatial variability, and its fitting effect was more desirable compared with the global model. Conclusion    The GWR model is more accurate in describing the spatial varying relationship between human population genetic structure and climate factors, and it is obviously superior to the global model.

Key words: Spatial genetics; Geographically weighted regression; Spatial autocorrelation; Spatial heterogeneity

中图分类号: 

  • R195.1
[1] 李芳玉,袁中尚,张霄帅,薛付忠. 基于偏最小二乘路径模型的整体基因与多数量性状交互作用的统计推断[J]. 山东大学学报(医学版), 2013, 51(11): 102-106.
[2] 张茜,朱振昕,孟文佳,张永媛,薛付忠. 纵向监测健康体检数据的统计分析策略[J]. 山东大学学报(医学版), 2012, 50(2): 149-.
[3] 刘保锋1,袁长海1,于敬敏2,秦敬柱1,郭丽1,耿文革3. SF-36量表在三峡移民生命质量测定中的信度和效度评价[J]. 山东大学学报(医学版), 2010, 48(7): 129-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!