您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (3): 57-62.doi: 10.6040/j.issn.1671-7554.0.2022.1299

• 基础医学 • 上一篇    

基于支持向量机的脊柱离体组织电阻抗识别

陈炳荣1,施勇旺2,李嘉浩1,翟吉良1,刘梁3,刘文勇4,胡磊5,赵宇1   

  1. 1. 中国医学科学院北京协和医学院北京协和医院骨科, 北京 100730;2. 中国医学科学院北京协和医学院, 北京 100730;3. 中国航天员科研训练中心, 北京 100094;4. 北京航空航天大学生物与医学工程学院, 北京 100083;5. 北京航空航天大学机械工程及自动化学院, 北京 100083
  • 发布日期:2023-03-24
  • 通讯作者: 胡磊. E-mail:hulei9971@sina.com;赵宇. E-mail:zhaoyupumch@163.com
  • 基金资助:
    国家重点研发计划(2018YFB1307603);北京市自然科学基金-海淀原始创新联合基金(L192061)

Electrical impedance recognition of spine tissue in vitro based on support vector machine

CHEN Bingrong1, SHI Yongwang2, LI Jiahao1, ZHAI Jiliang1, LIU Liang3, LIU Wenyong4, HU Lei5, ZHAO Yu1   

  1. 1. Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
    2. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
    3. China Astronaut Research and Training Center, Beijing 100094, China;
    4. Department of Biomedical Engineering, Beihang University, Beijing 100191, China;
    5. Department of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
  • Published:2023-03-24

摘要: 目的 测量不同脊柱组织的电阻抗,基于支持向量机建立电阻抗数据的组织分类算法并验证算法的准确性,寻找不同组织电阻抗分类阈值。 方法 取离体脊柱组织,应用电化学分析仪采集10~100 kHz频率范围内皮质骨、松质骨、脊髓、肌肉、髓核的电阻抗。将两只猪采集的数据集分别作为训练集和测试集,应用主成分分析降维至二维数据,训练和验证基于支持向量机(SVM)建立的分类算法,应用集成学习的方法计算不同组织分类的电阻抗阈值。 结果 5种组织在10~100 kHz的测量频率内,电阻抗值差异有统计学意义(P<0.001)。应用主成分分析降维的数据集建立的支持向量机分类算法识别不同组织的准确率为100%。应用集成学习建立的多个分类器计算出了不同组织的电阻抗分类阈值。 结论 基于支持向量机可以实现脊柱术区组织电阻抗的准确识别,有望应用于临床协助医生提升组织识别准确率。

关键词: 生物电阻抗, 组织识别, 支持向量机, 主成分分析, 集成学习

Abstract: Objective To measure impedances of different spinal tissues, to develop a tissue classification algorithm based on the impedance data using support vector machine(SVM), in order to verify the accuracy of the algorithm and to search for thresholds for impedance classification of different tissues. Methods Isolated spinal tissue was collected, and the electrical impedances of cortical bone, cancellous bone, spinal cord, muscle, and nucleus pulposus were collected using an electrochemical analyzer in the frequency range of 10-100 kHz. The data sets of two pigs were used as training set and test set, respectively. Principal component analysis(PCA)was used to reduce the dimensionality to two-dimensional data, and SVM based classification algorithm was trained and validated. Ensemble learning method was used to calculate the electrical impedance threshold for different tissue classifications. Results The electrical impedances of the five tissues were significantly different(P<0.001)within the measurement frequency of 10-100 kHz. The accuracy of PCA dimensionality reduction based SVM classification algorithm was 100%. Ensemble learning based multi-classifiers were used to compute impedance classification thresholds for different tissues. Conclusion Accurate identification of the electrical impedance of tissues in spinal surgery can be achieved based on support vector machines, which are expected to help surgeons improve the accuracy of tissue identification.

Key words: Bioelectrical impedance, Tissue recognition, Support vector machine, Principal component analysis, Ensemble learning

中图分类号: 

  • R687.1
[1] Shlobin NA, Raz E, Shapiro M, et al. Spinal neurovascular complications with anterior thoracolumbar spine surgery: a systematic review and review of thoracolumbar vascular anatomy[J]. Neurosurg Focus, 2020, 49(3): E9.
[2] QU H, ZHAO Y. Advances in tissue state recognition in spinal surgery: a review[J]. Front Med, 2021, 15(4): 575-584.
[3] Heileman K, Daoud J, Tabrizian M. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis[J]. Biosens Bioelectron, 2013, 49: 348-359. doi:10.1016/j.bios.2013.04.017.
[4] Park J, Choi WM, Kim K, et al. Biopsy needle integrated with electrical impedance sensing microelectrode array towards real-time needle guidance and tissue discrimination[J]. Sci Rep, 2018, 8(1): 264.
[5] Cervantes J, Garcia LF, Rodríguez ML, et al. A comprehensive survey on support vector machine classification: Applications, challenges and trends[J]. Neurocomputing, 2020, 408: 189-215. doi: 10.1016/j.neucom.2019.10.118
[6] Wang M, Chen H. Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis[J]. Applied Soft Computing, 2020, 88: 105946. doi: 10.1016/j.asoc.2019.105946.
[7] Liang X, Zhu L, Huang D. Multi-task ranking SVM for image cosegmentation[J]. Neurocomputing, 2017, 247: 126-136. doi: 10.1016/j.neucom.2017.03.060.
[8] Wu SX, Wai HT, LI L, et al. A review of distributed algorithms for principal component analysis[J]. Proceedings of the IEEE, 2018, 106(8): 1321-1340.
[9] Zhou J, Jiang Z, Chung F, et al. Formulating ensemble learning of SVMs into a single SVM formulation by negative agreement learning[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(10): 6015-6028.
[10] Dong X, Yu Z, Cao W, et al. A survey on ensemble learning[J]. Front Comput Sci, 2020, 14(2): 241-258.
[11] Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction[J]. BMC Med Res Methodol, 2019, 19(1): 64.
[12] Kalvøy H, Frich L, Grimnes S, et al. Impedance-based tissue discrimination for needle guidance[J]. Physiol Meas, 2009, 30(2): 129-140.
[13] Cheng Z, Carobbio ALC, Soggiu L, et al. SmartProbe: a bioimpedance sensing system for head and neck cancer tissue detection[J]. Physiol Meas, 2020, 41(5): 054003.
[14] CHENG Z, Davies BL, Caldwell DG, et al. A new venous entry detection method based on electrical bio-impedance sensing[J]. Ann Biomed Eng, 2018, 46(10): 1558-1567.
[15] Kent B, Rossa C. Electric impedance spectroscopy feature extraction for tissue classification with electrode embedded surgical needles through a modified forward stepwise method[J]. Comput Biol Med, 2021, 135: 104522. doi:10.1016/j.compbiomed.2021.
[16] Halonen S, Kari J, Ahonen P, et al. Real-time bioimpedance-based biopsy needle can identify tissue type with high spatial accuracy[J]. Ann Biomed Eng, 2019, 47(3): 836-851.
[17] Bolger C, Carozzo C, Roger T, et al. A preliminary study of reliability of impedance measurement to detect iatrogenic initial pedicle perforation(in the porcine model)[J]. Eur Spine J, 2006, 15(3): 316-320.
[18] 孟云, 米宽, 郑诚功, 等. AD5933生物阻抗实时监测的椎弓根内固定辅助系统[J]. 中国科技论文, 2015, 10(5): 580-583. MENG Yun, MI Kuan, ZHENG Chenggong, et al. Bioelectrical impedance aided surgery system for transpedicle screws fixation based on AD5933[J]. China Science Paper, 2015, 10(5): 580-583.
[19] 钟胜河, 朱浩, 郭劲松, 等. 基于生物电阻抗法的椎弓根螺钉植入导航系统[J]. 电子技术应用, 2013, 39(4): 112-114. ZHONG Shenghe, ZHU Hao, GUO Jinsong, et al. Study of pedicle screw implantation navigation system based on bioelectric-impedance method[J]. Application of Electronic Technique, 2013, 39(4): 112-114.
[20] 赵硕峰, 王智运, 邓亲恺, 等. 家猪骨与软组织电阻抗特性研究[J]. 中国医疗设备, 2011, 26(4): 17-21. ZHAO Shuofeng, WANG Zhiyun, DENG Qinkai, et al. Study on impedance characteristics of pigs bones[J]. China Medical Devices, 2011, 26(4): 17-21.
[21] Jensen B, Braun W, Both M, et al. Configuration of bioelectrical impedance measurements affects results for phase angle[J]. Med Eng Phys, 2020, 84: 10-15. doi:10.1016/j.medengphy.2020.07.021.
[22] Jaeho Park, Sanghyeok Kim, Inkyu Park. A multi-pair electrode based impedance sensing biopsy needle for tissue discrimination during biopsy process[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2014, 2014: 1695-1698. doi:10.1109/embc.2014.6943933.
[23] Qu H, Geng B, Chen B, et al. Force perception and bone recognition of vertebral lamina milling by robot-assisted ultrasonic bone scalpel based on backpropagation neural network[J]. IEEE Access, 2021, 9:52101-52112. doi: 10.1109/ACCESS.2021.3069549.
[24] Jair C, Farid GL, Asdrúbal LC, et al. Data selection based on decision tree for SVM classification on large data sets[J]. APPL Soft Comput, 2015, 37: 797-798. doi: 10.1016/j.asoc.2015.08.048.
[25] Alam S, Moonsoo K, Jae YP, et al. Performance of classification based on PCA, linear SVM, and Multi-kernel SVM [C] // Eighth International Conference on Ubiquitous & Future Networks. IEEE, 2016: 987-989.
[26] Xu S, Wang P, Dong Y. Measuring electrolyte impedance and noise simultaneously by triangular waveform voltage and principal component analysis[J]. Sensors(Basel), 2016, 16(4): E576.
[27] Liu B. BioSeq-analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches[J]. Brief Bioinform, 2019, 20(4): 1280-1294.
[28] Liu Bin, Wang SY, Long R, et al. iRSpot-EL: identify recombination spots with an ensemble learning approach[J]. Bioinformatics, 2017, 33(1): 35-41.
[29] Liu B, Yang F, Chou K. 2L-piRNA: a two-layer ensemble classifier for identifying piwi-interacting RNAs and their function[J]. Mol Ther Nucleic Acids, 2017, 7: 267-277. doi:10.1016/j.omtn.2017.04.008.
[1] 王韶卿 刘毅慧 付婷婷 成金勇 刘强. 肝癌31磷磁共振波谱数据的分类[J]. 山东大学学报(医学版), 2209, 47(6): 42-46.
[2] 公晓云,申小涛,徐静,张涛,朱正江,薛付忠. 代谢组学数据正态性对疾病分类准确性的影响[J]. 山东大学学报(医学版), 2016, 54(4): 89-93.
[3] 张新新1,李雨1,纪玉佳2,王鹏2,张永清2,薛付忠1. 主成分-线性判别分析在中药药性识别中的应用[J]. 山东大学学报(医学版), 2012, 50(1): 143-146.
[4] 于连龙1,王菊生2,王淑娥1,张凤凤3,赵长峰1. 中老年血脂异常患者6种微量元素营养状况的主成分分析[J]. 山东大学学报(医学版), 2012, 50(1): 140-142.
[5] 高青松,薛付忠. 核主成分logistic回归模型在非线性关联分析中的应用[J]. 山东大学学报(医学版), 2011, 49(5): 140-.
[6] 王韶卿 刘毅慧 付婷婷 成金勇 刘强. 肝癌31磷磁共振波谱数据的分类[J]. 山东大学学报(医学版), 2009, 47(6): 42-46.
[7] 彭倩倩,薛付忠
. permutationPCA方法在病例对照关联
分析中不同遗传模型下的表现
[J]. 山东大学学报(医学版), 2009, 47(03): 94-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!