您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2012, Vol. 50 ›› Issue (3): 120-.

• 论文 • 上一篇    下一篇

贝叶斯错误发现率

曾平,王婷   

  1. 徐州医学院流行病与卫生统计学教研室, 江苏 徐州 221002
  • 收稿日期:2011-09-12 出版日期:2012-03-10 发布日期:2012-03-10
  • 通讯作者: 王婷(1984- ),研究实习员,主要从事贝叶斯统计和高纬数据分析研究。E-mail:wangtwg@163.com
  • 作者简介:曾平(1982- ),男,硕士研究生,助教,主要从事贝叶斯统计医学应用的研究。
  • 基金资助:

    江苏省教育厅高校哲学社会科学研究基金资助项目(2010SJB790037)

Bayesian false discovery rate

ZENG Ping, WANG Ting   

  1. Department of Epidemiology and Medical Statistics, Xuzhou Medical College, Xuzhou 221002, Jiangsu, China
  • Received:2011-09-12 Online:2012-03-10 Published:2012-03-10

摘要:

目的   研究多重假设检验中错误发现率的贝叶斯解释和经验贝叶斯估计。方法   建立前列腺癌微阵列数据的贝叶斯模型,采用经验的方法估计z值的分布函数和应用Poisson回归方法估计z值的边际密度,然后经验估计贝叶斯错误发现率和局部错误发现率。结果   以(-∞,-3]作为拒绝域时错误发现率的经验贝叶斯估计值为0-167,局部错误发现率在0-20以下的基因有58个。结论   可从贝叶斯统计的角度解释错误发现率,在高维数据中能够经验地估计错误发现率。

关键词: 大规模数据;多重假设检验;错误发现率;贝叶斯和经验贝叶斯;密度估计;前列腺肿瘤

Abstract:

Objective   To investigate the Bayesian interpretation of false discovery rate in multiple hypothesis testing and the empirical Bayes approach. Methods   A Bayesian two-group model was constructed for prostate cancer microarray data. The cumulative distribution function of the z value was empirically estimated and the density function was estimated using the method of Poisson regression by Efron, then the empirical Bayes approach was applied to estimate false discovery rate and local false discovery rate. Results   The false discovery rate was empirically estimated as 0-167 given the rejection region of (-∞,-3], and the local false discovery rates were found to be no more than 0-2 in 58 genes. Conclusion   The false discovery rate can be interpreted from the Bayesian perspective and empirically estimated in high-dimensional data.

Key words:  Large scale data; Multiple hypothesis testing; False discovery rate; Bayesian and empirical Bayes approach; Density estimation; Prostate neoplasms

中图分类号: 

  • R195-1
[1] 高青松,薛付忠. 核主成分logistic回归模型在非线性关联分析中的应用[J]. 山东大学学报(医学版), 2011, 49(5): 140-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!