山东大学学报 (医学版) ›› 2018, Vol. 56 ›› Issue (7): 33-38.doi: 10.6040/j.issn.1671-7554.0.2017.1170
• • 上一篇
刘发生1,2,韩建2,李莎1,尚红园1,马敏1,王荣春2,张爱平1,韩利文2
LIU Fasheng1,2, HAN Jian2, LI Sha1, SHANG Hongyuan1, MA Min1, WANG Rongchun2, ZHANG Aiping1, HAN Liwen2
摘要: 目的 考察纳米TiO2与Cu2+联合暴露对斑马鱼胚胎发育毒性的影响。 方法 采用AB系斑马鱼为动物模型,以斑马鱼胚胎在72 hpf孵化率、96 hpf死亡率及120 hpf畸形率为指标,评价纳米TiO2联合Cu2+对斑马鱼胚胎发育的毒性作用。 结果 (0.12~4)mg/L Cu2+对斑马鱼胚胎具有较强的毒性作用;(0~200)mg/L纳米TiO2对斑马鱼胚胎发育无明显影响。纳米TiO2与Cu2+联合暴露对斑马鱼胚胎有一定的发育毒性,但与单独Cu2+暴露相比,斑马鱼胚胎的死亡率、畸形率明显下降,孵化率明显上升。 结论 纳米TiO2联合Cu2+在一定程度上降低了Cu2+对斑马鱼胚胎的发育毒性作用。
中图分类号:
[1] 王狄,李锋民,熊治廷,等.铜的植物毒性与植物蓄积的关系[J].土壤与环境, 2000, 9(2): 146-148. WANG Di, LI Fengmin, XIONG Zhiting, et al. Relationship between coppers toxicity and phytoaccumulation[J]. Soil and Environmental Sciences, 2000, 9(2): 146-148. [2] 万小华.铜过量导致的肝损伤及姜黄素的保护作用[D].武汉:华中科技大学, 2007. [3] 阮喜云,钟士江,刘庆勇,等.铜过量的表现[J].国外医学(医学地理分册), 1999, 20(4): 157-159. [4] Yin ZF, Wu L, Yang HG, et al. Recent progress in biomedical applications of titanium dioxide[J].Phys Chem Chem Phys, 2013, 15(14): 4844-4858. [5] Jiang ZF, Zhu CZ, Wan WM, et al. Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production[J]. J Mater Chem A, 2016, 4(5): 1806-1818. [6] Villatte G, Massard C, Descamps S, et al. Photoactive TiO2 antibacterial coating on surgical external fixation pins for clinical application[J]. Int J Nanomedicine, 2015, 10(1): 3367-3375. [7] Strähle U, Scholz S, Geisler R, et al. Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations[J]. Reprod Toxicol, 2012, 33(2): 128-132. [8] 彭蕴茹,韦英杰,丁永芳,等.基于斑马鱼模型的药物毒性研究进展与中药毒性研究新策略[J].中草药, 2017, 48(1): 17-30. PENG Yunru, WEI Yingjie, DING Yongfang, et al. Development of drug toxicity and novel strategy for toxicity of Chinese materia medica based on zebrafish model[J]. Chinese Traditional and Herbal Drugs, 2017, 48(1): 17-30. [9] Parichy DM, Elizondo MR, Mills MG, et al. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish[J]. Dev Dynam, 2009, 238(12): 2975-3015. [10] Lee O, Green JM, Tyler CR. Transgenic fish systems and their application in ecotoxicology[J]. Crit Rev Toxicol, 2014, 45(2): 124-141. [11] Scholz S, Fischer S, Gündel U, et al. The zebrafish embryo model in environmental risk assessment-applications beyond acute toxicity testing[J]. Environ Sci Pollut R, 2008, 15(5): 394-404. [12] Chakraborty C, Sharma AR, Sharma G, et al. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity[J]. J Nanobiotechnol, 2016, 14(1): 65-78. [13] Shin JT, Fishman MC. From zebrafish to human: Modular medical models[J]. Annu Rev Genom Hum G, 2002, 3(1): 311-340. [14] Kimmel CB, Ballard WW, Kimmel SR, et al. Stages of embryonic development of the zebrafish[J]. Dev Dynam, 1995, 203(3): 253-310. [15] Villamizar N, Ribas L, Piferrer F, et al. Impact of daily thermocycles on hatching rhythms, larval performance and sex differentiation of zebrafish[J]. PLoS One, 2012, 7(12): e52153. doi: 10.1371/journal.pone.0052153. [16] Handy RD, Owen R, Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs[J]. Ecotoxicology, 2008, 17(5): 315-325. [17] Ju-Nam Y, Lead JR. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications[J]. Sci Total Environ, 2008, 400(1-3): 396-414. [18] 张守申. 二氧化钛纳米与重金属Cd离子相互作用降低Cd2+对秀丽隐杆线虫的毒性[D].济南:山东大学, 2014. [19] Zhang X, Sun H, Zhang Z, et al. Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles[J]. Chemosphere, 2007, 67(1):160-166. [20] Sun H, Zhang X, Zhang Z, et al. Influence of titanium dioxide nanoparticles on speciation and bioavailability of arsenite[J]. Environ Pollut, 2009, 157(4): 1165-1170. [21] Tang Y, Li S, Qiao J, et al. Synergistic effects of nano-sized titanium dioxide and zinc on the photosynthetic capacity and survival of Anabaena sp[J]. Int J Mol Sci, 2013, 14(7): 14395-14407. [22] Rosenfeldt RR, Seitz F, Schulz R, et al. Heavy metal uptake and toxicity in the presence of titanium dioxide nanoparticles: a factorial approach using Daphnia magna[J]. Environ Sci Technol, 2014, 48(12): 6965-6972. [23] 蔡文超,区又君.重金属离子铜对鱼类早期发育阶段的毒性[J].南方水产, 2009, 5(5): 75-79. CAI Wenchao, OU Youjun. Toxicity of Cu2+ to fish during early developmental stages: a review[J]. South China Fisheries Science, 2009, 5(5): 75-79. [24] 尤宏,吕丽娜,赵雪松,等.几种纳米材料对斑马鱼孵化和致畸效应的影响[J].哈尔滨工业大学学报, 2013, 45(12): 48-52. YOU Hong, LÜ Lina, ZHAO Xuesong, et al. Effects of nanomaterials on the hatching and malformation rate of zebrafish embryos[J]. Journal of Harbin Institute of Technology, 2013, 45(12): 48-52. [25] Bar-Ilan O, Louis KM, Yang SP, et al. Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish[J]. Nanotoxicology, 2012, 6(6): 670-679. [26] Clemente Z, Castro VL, Moura MA, et al. Toxicity assessment of TiO2 nanoparticles in zebrafish embryos under different exposure conditions[J]. Aquat Toxicol, 2014, 147(2): 129-139. |
No related articles found! |
|