山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (4): 60-64.doi: 10.6040/j.issn.1671-7554.0.2016.828
李笑莹1,刘芳2,车海杰3,张尽晖4
LI Xiaoying1, LIU Fang2, CHE Haijie3, ZHANG Jinhui4
摘要: 目的 利用肿瘤标志物建立预测孤立性肺结节(SPN)恶性概率的数学模型,并评价其临床价值。 方法 选取250例SPN患者,考察其年龄、性别、吸烟史、症状、结节最大径、结节部位、病理,以及血清癌胚抗原(CEA)、细胞角蛋白19片段抗原(CYFRA21-1)、神经元特异性烯醇化酶(NSE)水平,采用二分类Logistic回归法作影响因素筛选,并建立Logistic回归模型。绘制受试者工作特征曲线(ROC)并计算曲线下面积(AUC)以评价模型准确性,并与梅奥模型比较以评价模型的临床价值。 结果 CEA(P=0.002, OR=5.921, 95%CI=1.968~17.819),CYFRA21-1(P=0.046, OR=2.500, 95%CI=1.018~6.142),症状(P=0.010, OR=2.384, 95%CI=1.234~4.607),结节最大径(P=0.001, OR=2.331, 95%CI=1.441~3.773)与SPN的良恶性有关;由此建立预测模型:P=ex/(1+ex), X=-1.991+0.869×症状+0.846×结节最大径+1.779×CEA+0.916×CYFRA21-1;采用Hosmer-Lemeshow检验模型的拟合度较好(P=0.691);当截点为0.636时,灵敏度为63.5%,特异度为71.2%;预测模型(AUC:0.734±0.033)与指南推荐的梅奥模型(AUC:0.792±0.047)进行比较,差异无统计学意义(P>0.05)。 结论 CEA、CYFRA21-1、症状和结节最大径为恶性SPN的独立危险因素;由此建立的Logistic回归模型准确性较高,有较好的临床价值。
中图分类号:
[1] 张菁,马靖,王广发.实性和亚实性肺结节临床处理:ACCP最新肺结节诊疗指南简介[J]. 中华结核和呼吸杂志, 2014, 37(3): 202-205. [2] Gould MK, Fletcher J, Lannettoni MD, et al. Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines(2nd edition)[J]. Chest, 2007, 132(3 Suppl): 108S-130S. [3] Gould MK, Donington J, Lynch WR, et al. Evaluation of individuals with pulmonary nodules:when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines[J]. Chest, 2013, 143(5): e93S-e120S. [4] MacMahon H, Austin JH, Gamsu G, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society[J]. Radiology, 2005, 237(2): 395-400. [5] David PN, Alexander AB, Heber M, et al. Recommendations for the management of subsolid pulmonary nodules detected at CT:A statement from the fleischner society[J]. Radiology, 2013, 266(1): 304-317. [6] Callister ME, Baldwin DR, Akram AR, et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules[J]. Thorax, 2015, 70(2): ii1-ii54. [7] Slatore CG, Horeweg N, Jett JR, et al. An official American Thoracic Society research statement: a research framework for pulmonary nodule evaluation and management[J]. Am J Respir Crit Care Med, 2015, 192(4): 500-514. [8] Wood DE. National Comprehensive Cancer Network(NCCN)clinical practice guidelines for lung cancer screening[J]. Thorac Surg Clin, 2015, 25(2): 185-197. [9] Bai C, Choi CM, Chu CM, et al. Evaluation of pulmonary nodules: clinical practice consensus guidelines for Asia[J]. Chest, 2016, 150(4): 877-893. [10] 中华医学会呼吸病学分会肺癌学组,中国肺癌防治联盟专家组. 肺部结节诊治中国专家共识[J].中华结核和呼吸杂志, 2015, 38(4): 249-254. [11] 周清华,范亚光,王颖,等.中国肺部结节分类、诊断与治疗指南(2016年版)[J].中国肺癌杂志,2016, 19(12): 793-798. ZHOU Qinghua, FAN Yaguang, WANG Ying, et al. China national guideline of classification, diagnosis and treatment for lung nodules(2016 version)[J]. Chin J Lung Cancer, 2016, 19(12): 793-798. [12] Swensen SJ, Silverstein MD, Ilstrup DM, et al. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules[J]. Arch Intern Med, 1997,157(8): 849-855. [13] Gould MK, Ananth L, Barnett PC. A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules[J]. Chest, 2007, 131(2): 383-388. [14] 李运,陈克终,隋锡朝,等.孤立性肺结节良恶性判断数学预测模型的建立[J].北京大学学报(医学版), 2011, 43(3): 450-454. LI Yun, CHEN Kezhong, SUI Xizhao, et al. Establishment of a mathematical prediction model to evaluate the probability of malignancy or benign in patients with solitaty pulmonary nodules[J]. Journal of Peking University(Health Sciences), 2011, 43(3): 450-454. [15] 田蓉,苏鸣岗,田野,等.影响孤立性肺结节良恶性鉴别的因素分析及恶性可能性预测[J].四川大学学报(医学版), 2012, 43(3): 404-408. TIAN Rong, SU Minggang, TIAN Ye, et al. Development of a predicting model to estimate the probability of malignancy of solitary pulmonary nodules[J]. Journal of Sichuan University(Medical Science Edition), 2012, 43(3): 404-408. [16] Harders SW. LUCIS: lung cancer imaging studies[J]. Dan Med J, 2012, 59(11): B4542. [17] Gurney JW. Determining the likelihood of malignancy in solitarypulmonary nodules with Bayesian analysis: Part I Theory[J]. Radiology, 1993, 186(2): 405-413. [18] Siegelman SS, Khouri NF, Leo FP, et al. Solitary pulmonary nodules: CT assessment[J]. Radiology, 1986, 160(2): 307-312. [19] 杨德松,李运,刘军,等.孤立性肺结节直径大小与临床及病理关系的初步研究[J].中国肺癌杂志, 2010, 13(6): 607-611. YANG Desong, LI Yun, LIU Jun, et al. Study on solitary pulmonary nodules: correlation between diameter and clinical manifestation and pathological features[J]. Chin J Lung Cancer, 2010, 13(6): 607-611. [20] 上官红,肖伟,董亮,等.血清CYFRA21-1、NSE和CEA在肺癌诊断和评估预后中的临床价值[J].山东大学学报(医学版), 2010, 48(12): 134-137. SHANGGUAN Hong, XIAO Wei, DONG Liang, et al. Clinical value of serum CYFRA 21-1, NSE and CEA in the diagnosis and prognosis of lung cancer[J]. Journal of Shandong University(Health Science), 2010, 48(12): 134-137. [21] 罗疏薇,欧春萍,张莉萍,等.应用ROC曲线评价CEA、CYFRA21-1、SCC对非小细胞肺癌的诊断价值[J].重庆医学, 2011, 40(3): 250-252, 255. LUO Shuwei, OU Chunping, ZHANG Liping, et al. Applicationi of ROC curve to evaluate CEA, CYFRA21-1, SCC to non-small cell lung cancer diagnosis value[J]. Chongqing Medicine, 2011, 40(3): 250-252, 255. [22] 冯香梅,王国庆,陈瑛,等.血清肿瘤标志物在肺癌诊断中的应用价值[J].中国肿瘤临床, 2010, 37(6):331-334. FENG Xiangmei, WANG Guoqing, CHEN Ying, et al. Diagnostic value of serum tumor markers for lung cancer[J]. Chinese Journal of Clinical Oncology, 2010, 37(6):331-334. [23] Satoh H, Ishikawa H, Kurishima K, et al. Cut of levels of NSE to differentiate SCLC from NSCLC[J]. Oncol Rep, 2002, 9(3): 581-583. [24] 倪莲芳,刘新民.血清肿瘤标记物对孤立性肺结节良恶性的诊断价值[J].北京大学学报(医学版), 2014, 46(5): 707-710. NI Lianfang, LIU Xinmin. Diagnostic value of serum tumor markers in differentiating malignant from benign solitary pulmonary nodules[J]. Journal of Peking University(Health Sciences), 2014, 46(5): 707-710. [25] 冯国双,刘德平.医学研究中的logistic回归分析及SAS实现[M].北京:北京大学医学出版社,2012. |
[1] | 王晓花1,高淑春1,崔蕾2,蒋雪梅1,杜以真1. 白介素-28B在乙型肝炎病毒相关肝癌患者血清中的表达及意义[J]. 山东大学学报(医学版), 2012, 50(10): 106-110. |
[2] | 上官红1,肖伟1,董亮1,李玉1,田辉2,郑天郢3. 血清CYFRA21-1、NSE和CEA在肺癌诊断和评估预后中的临床价值[J]. 山东大学学报(医学版), 2010, 48(12): 134-137. |
|