您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2017, Vol. 55 ›› Issue (4): 60-64.doi: 10.6040/j.issn.1671-7554.0.2016.828

• 临床医学 • 上一篇    下一篇

肿瘤标志物预测孤立性肺结节恶性概率模型的建立与初步评价

李笑莹1,刘芳2,车海杰3,张尽晖4   

  1. 1.滨州医学院烟台附属医院呼吸内科, 山东 烟台 264100;2.滨州医学院烟台附属医院统计室, 山东 烟台 264100;3.烟台毓璜顶医院血管外科, 山东 烟台 264000;4.大连医科大学附属第二医院呼吸内科, 辽宁 大连 116023
  • 收稿日期:2016-07-11 出版日期:2017-04-10 发布日期:2017-04-10
  • 通讯作者: 张尽晖. E-mail:zjhdyey@163.com E-mail:zjhdyey@163.com

Establishment and preliminary evaluation of a model for predicting the malignant probability of solitary pulmonary nodule with tumor markers

LI Xiaoying1, LIU Fang2, CHE Haijie3, ZHANG Jinhui4   

  1. 1. Department of Respiration, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, Shandong, China;
    2. Department of Statistics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, Shandong, China;
    3. Department of Vascular Surgery, Yantai Yuhuangding Hospital, Yantai 264000, Shandong, China;
    4. Department of Respiration, The Sencond Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning, China
  • Received:2016-07-11 Online:2017-04-10 Published:2017-04-10

摘要: 目的 利用肿瘤标志物建立预测孤立性肺结节(SPN)恶性概率的数学模型,并评价其临床价值。 方法 选取250例SPN患者,考察其年龄、性别、吸烟史、症状、结节最大径、结节部位、病理,以及血清癌胚抗原(CEA)、细胞角蛋白19片段抗原(CYFRA21-1)、神经元特异性烯醇化酶(NSE)水平,采用二分类Logistic回归法作影响因素筛选,并建立Logistic回归模型。绘制受试者工作特征曲线(ROC)并计算曲线下面积(AUC)以评价模型准确性,并与梅奥模型比较以评价模型的临床价值。 结果 CEA(P=0.002, OR=5.921, 95%CI=1.968~17.819),CYFRA21-1(P=0.046, OR=2.500, 95%CI=1.018~6.142),症状(P=0.010, OR=2.384, 95%CI=1.234~4.607),结节最大径(P=0.001, OR=2.331, 95%CI=1.441~3.773)与SPN的良恶性有关;由此建立预测模型:P=ex/(1+ex), X=-1.991+0.869×症状+0.846×结节最大径+1.779×CEA+0.916×CYFRA21-1;采用Hosmer-Lemeshow检验模型的拟合度较好(P=0.691);当截点为0.636时,灵敏度为63.5%,特异度为71.2%;预测模型(AUC:0.734±0.033)与指南推荐的梅奥模型(AUC:0.792±0.047)进行比较,差异无统计学意义(P>0.05)。 结论 CEA、CYFRA21-1、症状和结节最大径为恶性SPN的独立危险因素;由此建立的Logistic回归模型准确性较高,有较好的临床价值。

关键词: 肿瘤标志物, 孤立性肺结节, Logistic回归模型

Abstract: Objective To establish a model for predicting the malignant probability of solitary pulmonary nodule(SPN)with the tumor markers and to evaluate its clinical value. Methods A retrospective cohort study in Yantai Yuhuangding Hospital of Shandong Province included 250 patients with definite pathological diagnosis of SPN from Jan. 2010 to Oct. 2015. Clinical data included age, gender, quantity of smoking history, symptoms, site, maximum diameter, the levels of CEA, CYFRA21-1 and NSE. By means of Logistic regression, 9 factors were analyzed to establish the model. Receiver operating characteristic curve(ROC)was performed and the area under the curve(AUC)was calculated. Our model was compared with the Mayo model to evaluate its clinical value. Results CEA level(P=0.002, OR=5.921, 95%CI=1.968-17.819), CYFRA21-1 level(P=0.046, OR=2.500, 95%CI=1.018-6.142), symptom 山 东 大 学 学 报 (医 学 版)55卷4期 -李笑莹,等.肿瘤标志物预测孤立性肺结节恶性概率模型的建立与初步评价 \=-(P=0.010, OR=2.384, 95%CI=1.234-4.607)and maximum diameter(P=0.001, OR=2.331, 95%CI=1.441-3.773)were associated with malignant SPN. Our prediction model: P=ex/(1+ex), X=-1.991+0.869×symptom+0.846×maximum diameter+1.779×CEA+0.916×CYFRA21-1. The goodness-of-fit of the model was fairly good. When the optimal cut-off point was 0.636, the sensitivity was 63.5% and specificity was 71.2%. The difference of AUC between our model and the Mayo clinic model was not statistically significant(P>0.05). Conclusion CEA, CYFRA21-1, symptom and maximum diameter are independent risk factors of malignant SPN. Our research shows that the Logistic regression model has high accuracy and clinical value.

Key words: Solitary pulmonary nodule, Tumor markers, Logistic regression model

中图分类号: 

  • R734.2
[1] 张菁,马靖,王广发.实性和亚实性肺结节临床处理:ACCP最新肺结节诊疗指南简介[J]. 中华结核和呼吸杂志, 2014, 37(3): 202-205.
[2] Gould MK, Fletcher J, Lannettoni MD, et al. Evaluation of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines(2nd edition)[J]. Chest, 2007, 132(3 Suppl): 108S-130S.
[3] Gould MK, Donington J, Lynch WR, et al. Evaluation of individuals with pulmonary nodules:when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines[J]. Chest, 2013, 143(5): e93S-e120S.
[4] MacMahon H, Austin JH, Gamsu G, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society[J]. Radiology, 2005, 237(2): 395-400.
[5] David PN, Alexander AB, Heber M, et al. Recommendations for the management of subsolid pulmonary nodules detected at CT:A statement from the fleischner society[J]. Radiology, 2013, 266(1): 304-317.
[6] Callister ME, Baldwin DR, Akram AR, et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules[J]. Thorax, 2015, 70(2): ii1-ii54.
[7] Slatore CG, Horeweg N, Jett JR, et al. An official American Thoracic Society research statement: a research framework for pulmonary nodule evaluation and management[J]. Am J Respir Crit Care Med, 2015, 192(4): 500-514.
[8] Wood DE. National Comprehensive Cancer Network(NCCN)clinical practice guidelines for lung cancer screening[J]. Thorac Surg Clin, 2015, 25(2): 185-197.
[9] Bai C, Choi CM, Chu CM, et al. Evaluation of pulmonary nodules: clinical practice consensus guidelines for Asia[J]. Chest, 2016, 150(4): 877-893.
[10] 中华医学会呼吸病学分会肺癌学组,中国肺癌防治联盟专家组. 肺部结节诊治中国专家共识[J].中华结核和呼吸杂志, 2015, 38(4): 249-254.
[11] 周清华,范亚光,王颖,等.中国肺部结节分类、诊断与治疗指南(2016年版)[J].中国肺癌杂志,2016, 19(12): 793-798. ZHOU Qinghua, FAN Yaguang, WANG Ying, et al. China national guideline of classification, diagnosis and treatment for lung nodules(2016 version)[J]. Chin J Lung Cancer, 2016, 19(12): 793-798.
[12] Swensen SJ, Silverstein MD, Ilstrup DM, et al. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules[J]. Arch Intern Med, 1997,157(8): 849-855.
[13] Gould MK, Ananth L, Barnett PC. A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules[J]. Chest, 2007, 131(2): 383-388.
[14] 李运,陈克终,隋锡朝,等.孤立性肺结节良恶性判断数学预测模型的建立[J].北京大学学报(医学版), 2011, 43(3): 450-454. LI Yun, CHEN Kezhong, SUI Xizhao, et al. Establishment of a mathematical prediction model to evaluate the probability of malignancy or benign in patients with solitaty pulmonary nodules[J]. Journal of Peking University(Health Sciences), 2011, 43(3): 450-454.
[15] 田蓉,苏鸣岗,田野,等.影响孤立性肺结节良恶性鉴别的因素分析及恶性可能性预测[J].四川大学学报(医学版), 2012, 43(3): 404-408. TIAN Rong, SU Minggang, TIAN Ye, et al. Development of a predicting model to estimate the probability of malignancy of solitary pulmonary nodules[J]. Journal of Sichuan University(Medical Science Edition), 2012, 43(3): 404-408.
[16] Harders SW. LUCIS: lung cancer imaging studies[J]. Dan Med J, 2012, 59(11): B4542.
[17] Gurney JW. Determining the likelihood of malignancy in solitarypulmonary nodules with Bayesian analysis: Part I Theory[J]. Radiology, 1993, 186(2): 405-413.
[18] Siegelman SS, Khouri NF, Leo FP, et al. Solitary pulmonary nodules: CT assessment[J]. Radiology, 1986, 160(2): 307-312.
[19] 杨德松,李运,刘军,等.孤立性肺结节直径大小与临床及病理关系的初步研究[J].中国肺癌杂志, 2010, 13(6): 607-611. YANG Desong, LI Yun, LIU Jun, et al. Study on solitary pulmonary nodules: correlation between diameter and clinical manifestation and pathological features[J]. Chin J Lung Cancer, 2010, 13(6): 607-611.
[20] 上官红,肖伟,董亮,等.血清CYFRA21-1、NSE和CEA在肺癌诊断和评估预后中的临床价值[J].山东大学学报(医学版), 2010, 48(12): 134-137. SHANGGUAN Hong, XIAO Wei, DONG Liang, et al. Clinical value of serum CYFRA 21-1, NSE and CEA in the diagnosis and prognosis of lung cancer[J]. Journal of Shandong University(Health Science), 2010, 48(12): 134-137.
[21] 罗疏薇,欧春萍,张莉萍,等.应用ROC曲线评价CEA、CYFRA21-1、SCC对非小细胞肺癌的诊断价值[J].重庆医学, 2011, 40(3): 250-252, 255. LUO Shuwei, OU Chunping, ZHANG Liping, et al. Applicationi of ROC curve to evaluate CEA, CYFRA21-1, SCC to non-small cell lung cancer diagnosis value[J]. Chongqing Medicine, 2011, 40(3): 250-252, 255.
[22] 冯香梅,王国庆,陈瑛,等.血清肿瘤标志物在肺癌诊断中的应用价值[J].中国肿瘤临床, 2010, 37(6):331-334. FENG Xiangmei, WANG Guoqing, CHEN Ying, et al. Diagnostic value of serum tumor markers for lung cancer[J]. Chinese Journal of Clinical Oncology, 2010, 37(6):331-334.
[23] Satoh H, Ishikawa H, Kurishima K, et al. Cut of levels of NSE to differentiate SCLC from NSCLC[J]. Oncol Rep, 2002, 9(3): 581-583.
[24] 倪莲芳,刘新民.血清肿瘤标记物对孤立性肺结节良恶性的诊断价值[J].北京大学学报(医学版), 2014, 46(5): 707-710. NI Lianfang, LIU Xinmin. Diagnostic value of serum tumor markers in differentiating malignant from benign solitary pulmonary nodules[J]. Journal of Peking University(Health Sciences), 2014, 46(5): 707-710.
[25] 冯国双,刘德平.医学研究中的logistic回归分析及SAS实现[M].北京:北京大学医学出版社,2012.
[1] 王晓花1,高淑春1,崔蕾2,蒋雪梅1,杜以真1. 白介素-28B在乙型肝炎病毒相关肝癌患者血清中的表达及意义[J]. 山东大学学报(医学版), 2012, 50(10): 106-110.
[2] 上官红1,肖伟1,董亮1,李玉1,田辉2,郑天郢3. 血清CYFRA21-1、NSE和CEA在肺癌诊断和评估预后中的临床价值[J]. 山东大学学报(医学版), 2010, 48(12): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!