山东大学学报(医学版) ›› 2016, Vol. 54 ›› Issue (9): 87-91.doi: 10.6040/j.issn.1671-7554.0.2016.042
罗成1,许青2,孙霖3,章涛1,李润滋1,刘言训1,薛付忠1,李秀君1
LUO Cheng1, XU Qing2, SUN Lin3, ZHANG Tao1, LI Runzi1, LIU Yanxun1, XUE Fuzhong1, LI Xiujun1
摘要: 目的 利用SIR模型,探讨成人麻疹爆发疫情的传播过程及疫苗控制效果。 方法 在一定的假设条件下,根据一定时期内实际爆发麻疹发病数,建立传染病动力学模型,利用马尔科夫蒙特卡洛算法对SIR模型进行参数估计。通过合理假设计算基本再生数(R0)和有效再生数(Rt),研究疫苗控制效果。结果〓本次麻疹爆发有效接触率β=0.001 06,恢复率γ=0.117, R0=2.96;在该模型假定条件下,如果在病例出现的第2天开始接种疫苗,可减少90.6%的病例发生,而在当前真实感染及控制措施下,该爆发在第26天时Rt<1,此时疾病即使不采取任何防治措施,亦会逐渐消失。 结论 SIR模型适用于研究成人麻疹爆发过程,其在参数估计及模型拟合中接近真实情况。
中图分类号:
[1] 马超, 中国麻疹流行病学与消除麻疹免疫策略研究[D]. 北京: 中国疾病预防控制中心, 2014. [2] 马超, 苏琪茹, 郝利新, 等. 中国2012~2013年麻疹流行病学特征与消除麻疹进展[J]. 中国疫苗和免疫, 2014, 20(3): 193-199. MA Chao, SU Qiru, HAO Lixin, et al. Measles epidemiology characteristics and progress toward measles elimination in China[J]. Chinese Journal of Vaccines and Immunization, 2014, 20(3): 193-199. [3] Grassly NC, Fraser C. Mathematical models of infectious disease transmission[J]. Nat Rev Micro, 2008, 6(6): 477-487. [4] Sood N, Wagner Z, Jaycocks A, et al. Test-and-treat in Los Angeles: a mathematical model of the effects of test-and-treat for the population of men who have sex with men in Los Angeles County[J]. Clin Infect Dis, 2013, 56(12): 1789-1796. [5] 马知恩,周义仓,王稳地,等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2006. [6] Chowell G, Blumberg S, Simonsen L, et al. Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission[J]. Epidemics, 2014, 9: 40-51, doi:10.1016/j.epidem.2014.09.011. [7] 张秀敏. 一起成人麻疹爆发调查及其控制效果评价[D]. 济南: 山东大学, 2006. [8] 许青, 徐爱强, 宋立志, 等. 一起成人麻疹爆发调查及其流行因素分析[J]. 中国计划免疫, 2007, 13(5): 440-443. XU Qing, XU Aiqiang, SONG Lizhi, et al. Epidemiological analysis on measles outbreak among adults[J]. Chinese Journal of Vaccines and Immunization, 2007, 13(5): 440-443. [9] Roberts MG, Tobias MI. Predicting and preventing measles epidemics in New Zealand: application of a mathematical model[J]. Epidemiol Infect, 2000, 124(2): 279-287. [10] Hamborsky J, Kriger K,Wolfe C. Epidemiology and prevention of vaccine-preventable diseases[M]. Washington: Centers for Disease Control and Prevention, 2015. [11] 史建国,葛玉蕾. 麻疹疫苗应急接种控制爆发流行的效果[J]. 中华疾病控制杂志, 2002, 6(2): 147-148. SHI Jianguo, GE Yulei. Analysis of the control effect on outbreak and epidemic of measle with measle vaccine emergency vaccination[J]. Chinese Journal of Disease Control & Prevention, 2002, 6(2): 147-148. [12] Haario H, Laine M, Mira A, et al. DRAM: Efficient adaptive MCMC[J]. Statist Comput, 2006, 16(4): 339-354. [13] Haario H, Saksman E,Tamminen J. An adaptive Metropolis algorithm[J]. Bernoulli, 2001, 7(2): 223-242. [14] Bonacic Marinovic AA, Swaan C, Wichmann O, et al. Effectiveness and timing of vaccination during School measles outbreak[J]. Emerg Infect Dis, 2012, 18(9): 1405-1413. [15] Appanna T, Aundhakar U. Parameter estimation of SIR epidemic model using MCMC methods[J]. Global J Pure Appl Math, 2016, 12(2): 1299-1306. [16] Morton A, Finkenstädt BF. Discrete time modelling of disease incidence time series by using Markov chain Monte Carlo methods[J]. J Roy Statist Soc Ser C, 2005, 54(3): 575-594. [17] Pandey A. Modelling dengue transmission and vaccination[D]. Clemson: Clemson University, 2014. [18] Durrheim D, Crowcroft N, Strebel P. Measles — The epidemiology of elimination[J]. Vaccine, 2014, 32(51): 6880-6883. [19] Fred B, Pauline D, Jianhong W. Mathematical epidemiology[M]. Heidelberg: Springer-Verlag, 2008. |
[1] | 唐小敏,张丽,叶绪芳,任刚,左丽. 贵州省2013年麻疹病毒核蛋白基因特征分析[J]. 山东大学学报(医学版), 2017, 55(3): 70-74. |
|