山东大学学报(医学版) ›› 2016, Vol. 54 ›› Issue (1): 1-6.doi: 10.6040/j.issn.1671-7554.0.2015.291
• 基础医学 • 下一篇
杨晖,董蓉,薛慧,胡祖权,曾柱
YANG Hui, DONG Rong, XUE Hui, HU Zuquan, ZENG Zhu
摘要: 目的 检测并分析肝癌细胞对人成熟树突状细胞(mDCs)基因转录水平的影响。 方法 利用免疫磁珠法分选出新鲜人外周血单核细胞,在体外经重组GM-CSF、IL-4和TNF-α诱导,培养并分化为mDCs。与Bel7402肝癌细胞共培养的mDCs为共培养组,正常培养的mDCs为对照组。共培养48 h后,Trizol法抽提总RNA,利用人树突状细胞基因芯片检测mDCs的基因在转录水平的变化表达。 结果 差异表达的基因共有663个(与对照组相比,变化表达倍数≥2),其中上调290个,下调373个。这些基因的功能主要涉及信号转导、细胞代谢和细胞周期等。 结论 肝癌细胞能在转录水平影响mDCs中多个基因的表达,这些基因控制并影响着mDCs的功能、增殖、分化和凋亡。
中图分类号:
[1] Huang Q, Tan Y, Yin P, et al. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics[J]. Cancer Res, 2013, 73(16):4992-5002. [2] Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives[J]. Gut, 2014, 63(5):844-855. [3] Steinman RM. Decision about dendritic cells-past present and future[J]. Annu Rev Immunol, 2012, 30(4):1-22. [4] Raval RR, Sharabi AB, Walker AJ, et al. Tumor immunology and cancer immunotherapy: summary of the 2013 SITC primer[J]. J Immunother Cancer, 2014, 2(1):1-11. [5] Chiang CL, Balint K, Coukos G, et al. Potential approaches for more successful dendritic cell-based immunotherapy[J]. Expert Opin Biol Ther, 2015, 15(4):569-582. [6] Yang M, Galina VS, Zhu P, et al. Dendritic cells in the cancer microenvironment[J]. J Cancer, 2013, 4(1):36-44. [7] Ma Y, Aymeric L, Locher C, et al. The dendritic cell-tumor cross-talk in cancer[J]. Curr Opin Immunol, 2011, 23(1):146-152. [8] Fridman WH, Remark R, Goc J. The immune microenvironment: a major player in human cancers[J]. Int Arch Allergy Immunol, 2014, 164(1):13-26. [9] Zeng Z, Xu X, Zhang Y, et al. Tumor-derived factors impaired motility and immune functions of dendritic cells through derangement of biophysical characteristics and reorganization of cytoskeleton[J]. Cell Motil Cytoskeleton, 2007, 64(3):186-198. [10] Zheng Q, Long J, Jia B, et al. Transforming growth factor-β1 deteriorates microrheological characteristics and motility of maturedendritic cells in concentration-dependent fashion[J]. Clin Hemorheol Microcirc, 2014, 56(1):25-40. [11] Beyoglu D, Imbeaud S, Maurhofer O, et al. Tissue metabolomics of hepatocellular carcinoma: tumor energy metabolism and the role of transcriptomic classification[J]. Hepatology, 2013, 58(1):229-238. [12] Krawczyk CM, Holowka T, Sun J, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation[J]. Blood, 2010, 115(23):4742-4749. [13] Lade A, Noon LA, Friedman SL. Contributions of metabolic dysregulation and inflammation to nonalcoholic steatohepatitis, hepatic fibrosis, and cancer[J]. Curr Opin Oncol, 2014, 26(1):100-107. [14] Warburg O. On respiratory impairment in cancer cells[J]. Science, 1956, 124(3215):267-272. [15] Dong H, Bullock TN. Metabolic influences that regulate dendritic cell function in tumors[J]. Front Immunol, 2014, 5:24. doi: 10.3389/fimmu.2014.00024. eCollection 2014. [16] 曾柱, 龙金华. 肝癌细胞对树突状细胞线粒体功能的抑制作用[J]. 第三军医大学学报, 2010, 32(9):930-933. ZENG Zhu, LONG Jinhua. Hepatocellular carcinoma cells suppress mitochondrial function of dendritic cells in vitro[J]. J Third Mil Med Univ, 2010, 32(9):930-933. [17] Viña J, Borras C, Abdelaziz KM, et al. The free radical theory of aging revisited: the cell signaling disruption theory of aging[J]. Antioxid Redox Signal, 2013, 19(8):779-787. [18] Lee SY, Jeon HM, Ju MK, et al. Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism[J]. Cancer Res, 2012, 72(14):3607-3617. [19] Zitvogel L, Kroemer G. Targeting dendritic cell metabolism in cancer[J]. Nat Med, 2010, 16(8):858-859. [20] Lu Y, Zhang M, Wang S, et al. P38 MAPK-inhibited dendritic cells induce superior antitumour immune responses and overcome regulatory T-cell-mediated immunosuppression[J]. Nat Commun, 2013, 5(6):1-14. [21] Pearce EJ, Everts B. Dendritic cell metabolism[J]. Nat Rev Immunol, 2015, 15(1):18-29. [22] Katholnig K, Linke M, Pham H, et al. Immune responses of macrophages and dendritic cells regulated by mTOR signalling[J]. Biochem Soc Trans, 2013, 41(4):927-933. [23] Bergenfelz C, Janols H, Wullt M, et al. Wnt5a inhibits human monocyte-derived myeloid dendritic cell generation[J]. Scand J Immunol, 2013, 78(2):194-204. [24] Blask DE, Dauchy RT, Dauchy EM, et al. Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention[J]. PLoS One, 2014, 9(8):1-14. |
[1] | 路真真,颜磊,张辉,张晓晖,赵兴波. 肿瘤微环境中TGF β-1对子宫内膜间质细胞活化的影响[J]. 山东大学学报(医学版), 2016, 54(9): 37-40. |
[2] | 李星宇, 梁婧, 李岩. 血管内皮抑素协同肿瘤特异性DC-T细胞的抗肿瘤效应[J]. 山东大学学报(医学版), 2015, 53(7): 19-23. |
[3] | 刘琼, 蒲业迪, 代广霞, 马家乐, 杨建霞, 李丽珍, 李颢, 王鲁群. 硼替佐米耐药多发性骨髓瘤细胞基因表达谱分析[J]. 山东大学学报(医学版), 2015, 53(6): 33-38. |
[4] | 李晨, 程玉峰, 李爱禄. 妇科门诊女性人乳头瘤病毒感染型别分布特征及临床分析[J]. 山东大学学报(医学版), 2015, 53(11): 73-76. |
[5] | 于永梅, 张华, 朱建辉, 王文成, 郭美玲. 128层4DCT全肝灌注成像在肝肿瘤诊断中的价值[J]. 山东大学学报(医学版), 2014, 52(7): 66-70. |
[6] | 张敏, 王雪峰. 负载凋亡肿瘤细胞的树突状细胞对喉癌细胞的杀伤作用[J]. 山东大学学报(医学版), 2014, 52(7): 32-36. |
[7] | 蒋力扬1,周海燕2,孟雪1,于金明1. 肝肉瘤样癌多发转移1例并文献复习[J]. 山东大学学报(医学版), 2014, 52(2): 106-108. |
[8] | 庄泳, 李栋, 付金秋, 时庆, 鞠秀丽. 儿童B系急性淋巴细胞白血病树突状细胞的生物学特性[J]. 山东大学学报(医学版), 2014, 52(11): 60-64. |
[9] | 王夏青,韩国庆,盛瑜,刘慧,孟玫,秦成勇,谷旭. 熊去氧胆酸对大鼠肝癌发生的抑制作用及机制[J]. 山东大学学报(医学版), 2013, 51(5): 44-47. |
[10] | 徐威,常宏,翟云鹏. Livin shRNA真核表达载体构建及其对HepG2细胞化疗敏感性的影响[J]. 山东大学学报(医学版), 2013, 51(12): 20-24. |
[11] | 鲁东,吕维富,张正峰,王伟昱,侯昌龙,张行明,肖景坤,周春泽. MSCTA在肝癌介入治疗术前的应用价值[J]. 山东大学学报(医学版), 2012, 50(9): 100-. |
[12] | 王坤红1,王文奇2,相玉芬1,王义国2,刘长虹2,李双玲2,曹莉莉3. 下调SnoN基因表达对HepG2细胞增殖及凋亡的影响[J]. 山东大学学报(医学版), 2012, 50(4): 33-37. |
[13] | 郭明明,余之刚,马忠兵,高德宗,李亮,李玉阳,张强,王峰,王斐,傅勤烨. 基因芯片技术筛选乳腺癌相关差异表达基因[J]. 山东大学学报(医学版), 2011, 49(7): 94-99. |
[14] | 倪永梁,李青. 树突状细胞治疗联合膀胱灌注表柔比星在TURBT术后的应用研究[J]. 山东大学学报(医学版), 2011, 49(2): 114-118. |
[15] | 张开宁,时丹丹,肖静,王蒙,李杰. 四维及二维超声造影在肝肿瘤诊断中的对照研究[J]. 山东大学学报(医学版), 2011, 49(10): 135-. |
|