您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2016, Vol. 54 ›› Issue (1): 1-6.doi: 10.6040/j.issn.1671-7554.0.2015.291

• 基础医学 •    下一篇

肝癌细胞对人成熟树突状细胞影响的基因芯片分析

杨晖,董蓉,薛慧,胡祖权,曾柱   

  1. 贵州医科大学生物与工程学院生物技术教研室, 贵州 贵阳 550004
  • 收稿日期:2015-03-19 出版日期:2016-01-11 发布日期:2016-01-11
  • 通讯作者: 曾柱. E-mail:zengzhu100@sina.com E-mail:zengzhu100@sina.com
  • 基金资助:
    国家自然科学基金(11162003,31260227);教育部科学技术研究重点项目(210196)

Gene microarray analysis of mature dendritic cells cultured with hepatocellular carcinoma cells

YANG Hui, DONG Rong, XUE Hui, HU Zuquan, ZENG Zhu   

  1. College of Biology and Engineering, Guizhou Medical University, Guiyang 550004, Guizhou, China
  • Received:2015-03-19 Online:2016-01-11 Published:2016-01-11

摘要: 目的 检测并分析肝癌细胞对人成熟树突状细胞(mDCs)基因转录水平的影响。 方法 利用免疫磁珠法分选出新鲜人外周血单核细胞,在体外经重组GM-CSF、IL-4和TNF-α诱导,培养并分化为mDCs。与Bel7402肝癌细胞共培养的mDCs为共培养组,正常培养的mDCs为对照组。共培养48 h后,Trizol法抽提总RNA,利用人树突状细胞基因芯片检测mDCs的基因在转录水平的变化表达。 结果 差异表达的基因共有663个(与对照组相比,变化表达倍数≥2),其中上调290个,下调373个。这些基因的功能主要涉及信号转导、细胞代谢和细胞周期等。 结论 肝癌细胞能在转录水平影响mDCs中多个基因的表达,这些基因控制并影响着mDCs的功能、增殖、分化和凋亡。

关键词: 树突状细胞, 肝肿瘤, 肿瘤微环境, 基因芯片

Abstract: Objective To detect the effects of hepatocellular carcinoma cells on the transcription of functional genes in maturate dendritic cells(mDCs). Methods Peripheral blood mononuclear cells(PBMCs)were enriched from freshly harvested whole blood by immunomagnetic beads. MDCs were induced by GM-CSF, IL-4 and TNF-α in vitro. Then, mDCs were cultured with(co-cultured group)or without(control group)hepatoma cells. Forty-eight hours later, total RNA of mDCs was collected and the expressions of functional genes were analyzed by using human dendritic cells gene array. Results There were 663 genes significantly regulated(compared with control group, fold changes≥ 2)in co-cultured group, of which 290 were up-regulated and 373 were down-regulated. These genes were associated with the functions of signal transduction, cell metabolism, cell cycle, and so on. Conclusion Hepatocellular carcinoma cells affect the transcription of some functional genes in mDCs, which thus affects its functions, proliferation, differentiation and apoptosis.

Key words: Tumor microenvironment, Microarrary, Liver neoplasms, Dendritic cells

中图分类号: 

  • R318.04
[1] Huang Q, Tan Y, Yin P, et al. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics[J]. Cancer Res, 2013, 73(16):4992-5002.
[2] Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives[J]. Gut, 2014, 63(5):844-855.
[3] Steinman RM. Decision about dendritic cells-past present and future[J]. Annu Rev Immunol, 2012, 30(4):1-22.
[4] Raval RR, Sharabi AB, Walker AJ, et al. Tumor immunology and cancer immunotherapy: summary of the 2013 SITC primer[J]. J Immunother Cancer, 2014, 2(1):1-11.
[5] Chiang CL, Balint K, Coukos G, et al. Potential approaches for more successful dendritic cell-based immunotherapy[J]. Expert Opin Biol Ther, 2015, 15(4):569-582.
[6] Yang M, Galina VS, Zhu P, et al. Dendritic cells in the cancer microenvironment[J]. J Cancer, 2013, 4(1):36-44.
[7] Ma Y, Aymeric L, Locher C, et al. The dendritic cell-tumor cross-talk in cancer[J]. Curr Opin Immunol, 2011, 23(1):146-152.
[8] Fridman WH, Remark R, Goc J. The immune microenvironment: a major player in human cancers[J]. Int Arch Allergy Immunol, 2014, 164(1):13-26.
[9] Zeng Z, Xu X, Zhang Y, et al. Tumor-derived factors impaired motility and immune functions of dendritic cells through derangement of biophysical characteristics and reorganization of cytoskeleton[J]. Cell Motil Cytoskeleton, 2007, 64(3):186-198.
[10] Zheng Q, Long J, Jia B, et al. Transforming growth factor-β1 deteriorates microrheological characteristics and motility of maturedendritic cells in concentration-dependent fashion[J]. Clin Hemorheol Microcirc, 2014, 56(1):25-40.
[11] Beyoglu D, Imbeaud S, Maurhofer O, et al. Tissue metabolomics of hepatocellular carcinoma: tumor energy metabolism and the role of transcriptomic classification[J]. Hepatology, 2013, 58(1):229-238.
[12] Krawczyk CM, Holowka T, Sun J, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation[J]. Blood, 2010, 115(23):4742-4749.
[13] Lade A, Noon LA, Friedman SL. Contributions of metabolic dysregulation and inflammation to nonalcoholic steatohepatitis, hepatic fibrosis, and cancer[J]. Curr Opin Oncol, 2014, 26(1):100-107.
[14] Warburg O. On respiratory impairment in cancer cells[J]. Science, 1956, 124(3215):267-272.
[15] Dong H, Bullock TN. Metabolic influences that regulate dendritic cell function in tumors[J]. Front Immunol, 2014, 5:24. doi: 10.3389/fimmu.2014.00024. eCollection 2014.
[16] 曾柱, 龙金华. 肝癌细胞对树突状细胞线粒体功能的抑制作用[J]. 第三军医大学学报, 2010, 32(9):930-933. ZENG Zhu, LONG Jinhua. Hepatocellular carcinoma cells suppress mitochondrial function of dendritic cells in vitro[J]. J Third Mil Med Univ, 2010, 32(9):930-933.
[17] Viña J, Borras C, Abdelaziz KM, et al. The free radical theory of aging revisited: the cell signaling disruption theory of aging[J]. Antioxid Redox Signal, 2013, 19(8):779-787.
[18] Lee SY, Jeon HM, Ju MK, et al. Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism[J]. Cancer Res, 2012, 72(14):3607-3617.
[19] Zitvogel L, Kroemer G. Targeting dendritic cell metabolism in cancer[J]. Nat Med, 2010, 16(8):858-859.
[20] Lu Y, Zhang M, Wang S, et al. P38 MAPK-inhibited dendritic cells induce superior antitumour immune responses and overcome regulatory T-cell-mediated immunosuppression[J]. Nat Commun, 2013, 5(6):1-14.
[21] Pearce EJ, Everts B. Dendritic cell metabolism[J]. Nat Rev Immunol, 2015, 15(1):18-29.
[22] Katholnig K, Linke M, Pham H, et al. Immune responses of macrophages and dendritic cells regulated by mTOR signalling[J]. Biochem Soc Trans, 2013, 41(4):927-933.
[23] Bergenfelz C, Janols H, Wullt M, et al. Wnt5a inhibits human monocyte-derived myeloid dendritic cell generation[J]. Scand J Immunol, 2013, 78(2):194-204.
[24] Blask DE, Dauchy RT, Dauchy EM, et al. Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention[J]. PLoS One, 2014, 9(8):1-14.
[1] 路真真,颜磊,张辉,张晓晖,赵兴波. 肿瘤微环境中TGF β-1对子宫内膜间质细胞活化的影响[J]. 山东大学学报(医学版), 2016, 54(9): 37-40.
[2] 李星宇, 梁婧, 李岩. 血管内皮抑素协同肿瘤特异性DC-T细胞的抗肿瘤效应[J]. 山东大学学报(医学版), 2015, 53(7): 19-23.
[3] 刘琼, 蒲业迪, 代广霞, 马家乐, 杨建霞, 李丽珍, 李颢, 王鲁群. 硼替佐米耐药多发性骨髓瘤细胞基因表达谱分析[J]. 山东大学学报(医学版), 2015, 53(6): 33-38.
[4] 李晨, 程玉峰, 李爱禄. 妇科门诊女性人乳头瘤病毒感染型别分布特征及临床分析[J]. 山东大学学报(医学版), 2015, 53(11): 73-76.
[5] 于永梅, 张华, 朱建辉, 王文成, 郭美玲. 128层4DCT全肝灌注成像在肝肿瘤诊断中的价值[J]. 山东大学学报(医学版), 2014, 52(7): 66-70.
[6] 张敏, 王雪峰. 负载凋亡肿瘤细胞的树突状细胞对喉癌细胞的杀伤作用[J]. 山东大学学报(医学版), 2014, 52(7): 32-36.
[7] 蒋力扬1,周海燕2,孟雪1,于金明1. 肝肉瘤样癌多发转移1例并文献复习[J]. 山东大学学报(医学版), 2014, 52(2): 106-108.
[8] 庄泳, 李栋, 付金秋, 时庆, 鞠秀丽. 儿童B系急性淋巴细胞白血病树突状细胞的生物学特性[J]. 山东大学学报(医学版), 2014, 52(11): 60-64.
[9] 王夏青,韩国庆,盛瑜,刘慧,孟玫,秦成勇,谷旭. 熊去氧胆酸对大鼠肝癌发生的抑制作用及机制[J]. 山东大学学报(医学版), 2013, 51(5): 44-47.
[10] 徐威,常宏,翟云鹏. Livin shRNA真核表达载体构建及其对HepG2细胞化疗敏感性的影响[J]. 山东大学学报(医学版), 2013, 51(12): 20-24.
[11] 鲁东,吕维富,张正峰,王伟昱,侯昌龙,张行明,肖景坤,周春泽. MSCTA在肝癌介入治疗术前的应用价值[J]. 山东大学学报(医学版), 2012, 50(9): 100-.
[12] 王坤红1,王文奇2,相玉芬1,王义国2,刘长虹2,李双玲2,曹莉莉3. 下调SnoN基因表达对HepG2细胞增殖及凋亡的影响[J]. 山东大学学报(医学版), 2012, 50(4): 33-37.
[13] 郭明明,余之刚,马忠兵,高德宗,李亮,李玉阳,张强,王峰,王斐,傅勤烨. 基因芯片技术筛选乳腺癌相关差异表达基因[J]. 山东大学学报(医学版), 2011, 49(7): 94-99.
[14] 倪永梁,李青. 树突状细胞治疗联合膀胱灌注表柔比星在TURBT术后的应用研究[J]. 山东大学学报(医学版), 2011, 49(2): 114-118.
[15] 张开宁,时丹丹,肖静,王蒙,李杰. 四维及二维超声造影在肝肿瘤诊断中的对照研究[J]. 山东大学学报(医学版), 2011, 49(10): 135-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!