您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (6): 22-28.doi: 10.6040/j.issn.1671-7554.0.2022.0855

• 基础医学 • 上一篇    

过氧化氢通过调控自噬增强宫颈癌的放疗敏感性

任慧欣1,郑茂金1,韩文灿1,王超群1,周云2,裴冬生1   

  1. 1.徐州医科大学临床与实验病理学实验室, 江苏 徐州 221004;2.徐州医科大学徐州临床学院放疗科, 江苏 徐州 221004
  • 发布日期:2023-06-06
  • 通讯作者: 裴冬生. E-mial:100000701030@xzhmu.edu.cn
  • 基金资助:
    2020年度徐州医科大学-面上项目(XYFM2020013)

Hydrogen peroxide enhances radiotherapy sensitivity of cervical cancer by regulating autophagy

REN Huixin1, ZHENG Maojin1, HAN Wencan1, WANG Chaoqun1, ZHOU Yun2, PEI Dongsheng1   

  1. 1. Laboratory of Clinical and Experimental Pathology Xuzhou Medical University, Xuzhou 221004, Jiangsu, China;
    2. Department of Radiotherapy, Xuzhou Clinical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
  • Published:2023-06-06

摘要: 目的 探讨过氧化氢(H2O2)联合透明质酸钠是否可以提高宫颈癌细胞的放疗敏感性,并探讨其潜在机制。 方法 将细胞分为对照组、透明质酸钠组、4 Gy组、透明质酸钠+4 Gy组,Western blotting实验检测自噬相关蛋白水平。将细胞分为对照组,透明质酸钠组,200 μmol/L H2O2组、500 μmol/L H2O2组、700 μmol/L H2O2组和1 000 μmol/L H2O2组,CCK8实验检测H2O2对细胞活力的影响;将细胞分为对照组和200 μmol/L H2O2组,分别进行0、2、4、6、8 Gy放疗,克隆形成实验评估H2O2的放疗增敏作用。将细胞分为对照组、200 μmol/L H2O2组、4 Gy组、200 μmol/L H2O2+4 Gy组,Western blotting实验和免疫荧光实验检测自噬相关蛋白水平。 结果 对照组与透明质酸钠组的自噬相关蛋白LC3 II、p62 表达差异无统计学意义(P>0.05);4 Gy组与透明质酸钠+4 Gy组的自噬相关蛋白LC3 II、p62 表达差异无统计学意义(P>0.05)。CCK8实验结果表明,放疗前后,对照组和透明质酸钠组的细胞增殖率差异无统计学意义(P>0.05);与对照组相比,200 μmol/L H2O2组促进细胞增殖(P<0.05),500 μmol/L H2O2组对细胞增殖的影响无统计学意义(P>0.05),700 μmol/L H2O2组和1 000 μmol/L H2O2组抑制细胞增殖(P<0.05)。克隆形成实验结果表明,H2O2增加了细胞对放疗的敏感性(P<0.05)。Western blotting实验和免疫荧光实验表明,与对照组相比,200 μmol/L H2O2组抑制了自噬(P<0.05);与4 Gy组相比,200 μmol/L H2O2+4 Gy组促进了自噬(P<0.05)。与对照组相比,200 μmol/L H2O2组p-AKT和p-mTOR蛋白表达增加(P<0.05);与4 Gy组相比,200 μmol/L H2O2+4 Gy组p-AKT和p-mTOR的表达减少(P<0.05)。 结论 H2O2通过调控AKT/mTOR通路进而调控自噬来提高宫颈癌的放疗敏感性。

关键词: 自噬, 过氧化氢, 透明质酸钠, 放疗敏感性, AKT/mTOR通路, 宫颈癌

Abstract: Objective To investigate whether hydrogen peroxide, represented as H2O2, combined with sodium hyaluronate can improve the sensitivity of cervical cancer cells to radiotherapy and to explore the underlying mechanisms. Methods The cells were divided into control group, sodium hyaluronate group, 4 Gy group, sodium hyaluronate+4 Gy group, and the expressions of autophagy related proteins were detected with Western blotting assay. Then, the cells were divided into control group, sodium hyaluronate group, 200 μmol/L H2O2 group, 500 μmol/L H2O2 group, 700 μmol/L H2O2 group and 1 000 μmol/L H2O2 group, and CCK8 experiment was used to detect the effect of H2O2 on cell viability. The cells were divided into control group and 200 μmol/L H2O2 group, and were subjected to 0, 2, 4, 6, 8 Gy radiotherapy, respectively, and the clonogenic assay was performed to assess the radiosensitizing effect of H2O2. The cells were divided into control group, 200 μmol/L H2O2 group, 4 Gy group and 200 μmol/L H2O2+4 Gy group, and the expressions of autophagy-related proteins were measured by Western blotting assay and immunofluorescence assay. Results The expressions of autophagy-related proteins LC3 II and p62 between control group and sodium hyaluronate group was not statistically significant (P>0.05). The expressions of autophagy-related proteins LC3 II and p62 between 4 Gy group and sodium hyaluronate+4 Gy group was not statistically significant(P>0.05). The results of CCK8 experiment showed that the cell proliferation rate was not statistically significant between control group and sodium hyaluronate group before and after radiotherapy(P>0.05); compared with control group, 200 μmol/L H2O2 promoted cell proliferation(P<0.05), 500 μmol/L H2O2 had no statistically significant effect on cell proliferation(P>0.05), and 700 μmol/L H2O2 and 1 000 μmol/L H2O2 inhibited cell proliferation(P<0.05). The results of clonogenesis assay showed that H2O2 increased the sensitivity of cells to radiotherapy(P<0.05). Western blotting assay and immunofluorescence assay showed that 200 μmol/L H2O2 group inhibited autophagy compared with the control group(P<0.05), and the 200 μmol/L H2O2+4 Gy group promoted autophagy compared with the 4 Gy group(P<0.05). The expressions of p-AKT and p-mTOR proteins were increased in 200 μmol/L H2O2 group compared with control group(P<0.05); while the expressions of p-AKT and p-mTOR were decreased in the 200 μmol/L H2O2+4 Gy group compared with 4 Gy group(P<0.05). Conclusion H2O2 improves radiosensitivity by regulating AKT/mTOR pathway, and then regulating autophagy.

Key words: Autophagy, Hydrogen peroxide, Sodium hyaluronate, Radiosensitivity, AKT/mTOR pathway, Cervical cancer

中图分类号: 

  • R574
[1] Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis [J]. Lancet Glob Health, 2020, 8(2): e191-e203.
[2] Hata M. Radiation therapy for elderly patients with uterine cervical cancer: feasibility of curative treatment[J]. Int J Gynecol Cancer, 2019, 29(3): 622-629.
[3] Mackay HJ, Wenzel L, Mileshkin L. Nonsurgical management of cervical cancer: locally advanced, recurrent, and metastatic disease, survivorship, and beyond[J]. Am Soc Clin Oncol Educ Book, 2015, 35(1): e299-e309.
[4] Reum Son A, Kim DY, Hun Park S, et al. Direct chemotherapeutic dual drug delivery through intra-articular injection for synergistic enhancement of rheumatoid arthritis treatment[J]. Sci Rep, 2015, 5: 14713. doi: 10.1038/srep14713.
[5] Noda T, Okuda T, Mizuno R, et al. Two-step sustained-release PLGA/hyaluronic acid gel formulation for intra-articular administration[J]. Biol Pharm Bull, 2018, 41(6): 937-943.
[6] Ogawa Y, Kubota K, Aoyama N, et al. Non-surgical breast-conserving treatment(KORTUC-BCT)using a new radiosensitization method(KORTUC II)for patients with stage I or II breast cancer[J]. Cancers(Basel), 2015, 7(4): 2277-2289.
[7] Aoyama N, Ogawa Y, Yasuoka M, et al. Therapeutic response to a novel enzyme-targeting radiosensitization treatment(KORTUC II)for residual lesions in patients with stage IV primary breast cancer, following induction chemotherapy with epirubicin and cyclophosphamide or taxane[J]. Oncol Lett, 2017, 13(1): 69-76.
[8] Trombino S, Servidio C, Curcio F, et al. Strategies for hyaluronic acid-based hydrogel design in drug delivery[J]. Pharmaceutics, 2019, 11(8): 407. doi: 10.3390/pharmaceutics11080407.
[9] Ogawa Y, Kubota K, Ue H, et al. Safety and effectiveness of a new enzyme-targeting radiosensitization treatment(KORTUC II)for intratumoral injection for low-LET radioresistant tumors[J]. Int J Oncol, 2011, 39(3): 553-560.
[10] Gewirtz DA. The four faces of autophagy: implications for cancer therapy[J]. Cancer Res, 2014, 74(3): 647-651.
[11] Asanuma K, Tanida I, Shirato I,et al. MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis[J]. FASEB J, 2003, 17(9): 1165-1167.
[12] Hu YL, Jahangiri A, Delay M, et al. Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy[J]. Cancer Res, 2012, 72(17): 4294-4299.
[13] 张小红,周云,杜秋莹,等. Atg7-siRNA通过调节精氨酸循环干扰食管癌ECA109细胞放疗敏感性[J]. 山东大学学报(医学版), 2021, 59(4): 28-34. ZHANG Xiaohong, ZHOU Yun, DU Qiuying, et al. Atg7-siRNA interferes with radiosensitivity of esophageal cancer ECA109 cells by regulating arginine circulation [J]. Journal of Shandong University(Health Sciences), 2021, 59(4): 28-34.
[14] Wang X, Fu YF, Liu X, et al. ROS promote Ox-LDL-induced platelet activation by up-regulating autophagy through the inhibition of the PI3K/AKT/mTOR pathway[J]. Cell Physiol Biochem, 2018, 50(5): 1779-1793.
[15] Liu S, Liao G, Li G. Regulatory effects of COL1A1 on apoptosis induced by radiation in cervical cancer cells[J]. Cancer Cell Int, 2017, 17(1): 1-9.
[16] Tokuhiro S, Ogawa Y, Tsuzuki K, et al. Development of a novel enzyme-targeting radiosensitizer(KORTUC)containing hydrogen peroxide for intratumoral injection for patients with low linear energy transfer-radioresistant neoplasms[J]. Oncol Lett, 2010, 1(6): 1025-1028.
[17] Ogawa Y, Kobayashi T, Nishioka A, et al. Reactive oxygen species-producing site in radiation and hydrogen peroxide-induced apoptosis of human peripheral T cells: involvement of lysosomal membrane destabilization[J]. Int J Mol Med, 2004, 13(5): 655-660.
[18] Cuervo AM. Autophagy: in sickness and in health[J]. Trends Cell Biol, 2004, 14(2): 70-77.
[19] Camuzard O, Santucci DS, Carle GF, et al. Autophagy in the crosstalk between tumor and microenvironment[J]. Cancer Lett, 2020, 490: 143-153. doi: 10.1016/j.canlet.2020.06.015.
[20] Hou G, Jia A, Yang L, et al. OP16 induces deadly autophagy and apoptosis of cells by inhibiting Akt in esophageal squamous cell carcinoma[J]. Mol Cell Biochem, 2020, 472(1): 219-230.
[21] Roy A, Bera S, Saso L, et al. Role of autophagy in tumor response to radiation: implications for improving radiotherapy[J]. Front Oncol, 2022, 12: 957373. doi: 10.3389/fonc.2022.957373.
[22] Ramirez JZ, Romagnoli GG, Kaneno R. Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy[J]. Life Sci, 2021, 265: 118745. doi: 10.1016/j.lfs.2020.118745.
[23] Kang R, Zeh H, Lotze M, et al. The multifaceted effects of autophagy on the tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1225: 99-114. doi: 10.1007/978-3-030-35727-6_7.
[24] Mukhopadhyay S, Mahapatra KK, Praharaj PP, et al. Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics[J]. Semin Cancer Biol, 2022, 85: 196-208. doi: 10.1016/j.semcancer.2021.09.003.
[25] Wang L, Shi J, Liu S, et al. RAC3 inhibition induces autophagy to impair metastasis in bladder cancer cells via the PI3K/AKT/mTOR pathway[J]. Front Oncol, 2022, 12: 915240. doi: 10.3389/fonc.2022.915240.
[26] Xu Z, Han X, Ou D, et al. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy[J]. Appl Microbiol Biotechnol, 2020, 104(2): 575-587.
[1] 郑荣慧,李攀,曹秀琴,贺瑞霞,陈民佳,陈海霞,杨志伟. SQSTM1蛋白在嗜肺军团菌感染RAW264.7细胞自噬中的作用机制[J]. 山东大学学报 (医学版), 2023, 61(6): 10-21.
[2] 何静,严如根,武志红,李长忠. 消癥抑癌方对卵巢癌SKOV3细胞增殖、迁移的影响[J]. 山东大学学报 (医学版), 2023, 61(5): 1-10.
[3] 刘萌,侯丛哲,麻焕玉,张震,赵新蕊,张萍,朱琳. β-雌二醇对宫颈癌Hela细胞增殖的影响[J]. 山东大学学报 (医学版), 2023, 61(2): 9-15.
[4] 修德健,高正文,宋婷婷,崔楠,崔静,孙健平. 生物信息学方法分析与宫颈癌有关联的基因[J]. 山东大学学报 (医学版), 2022, 60(10): 99-109.
[5] 陈泉材,韩赛,刘露,孙雨,尤学武,张俊华,张友忠. CDC7、MCM4在105例宫颈病变组织中的表达及意义[J]. 山东大学学报 (医学版), 2022, 60(1): 34-39.
[6] 徐兵,李勇,刘明,刘永辉. 沉默PRRX1基因表达可增强前列腺癌耐药细胞株PC-3/DTX对多西他赛的敏感性[J]. 山东大学学报 (医学版), 2021, 59(6): 103-110.
[7] 王璐,赵新蕊,朱琳. 25例早期宫颈癌无瘤化免举宫腹腔镜子宫切除术临床效果[J]. 山东大学学报 (医学版), 2021, 59(6): 76-80.
[8] 张小红,周云,杜秋莹,任慧欣,王超群. Atg7-siRNA通过调节精氨酸循环干扰食管癌ECA109细胞放疗敏感性[J]. 山东大学学报 (医学版), 2021, 59(4): 28-34.
[9] 张华宇,殷思源,刘健,马嘉旭,宋茹,曹国起,王一兵. 氧糖剥夺条件下培养表皮干细胞的定量蛋白质组学分析[J]. 山东大学学报 (医学版), 2021, 59(4): 17-27.
[10] 梁婷婷,杨勇霞,侯丛哲,黄太胜,王华丽,朱琳. PAX1基因甲基化与宫颈高级别上皮内病变及高危型HPV分型的关联性[J]. 山东大学学报 (医学版), 2021, 59(11): 48-52.
[11] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1-6.
[12] 孙文凯,孙卉,邬信芳,高伟,孟朝暾,李钦. 自噬标志物Beclin-1和P62与增殖因子Ki67在鼻息肉不同部位的表达及其意义[J]. 山东大学学报 (医学版), 2020, 58(6): 76-82.
[13] 孙盼盼,赵旭,林小雯,傅志俭. 医用臭氧对大鼠骨关节炎软骨细胞中PPARγ及自噬水平表达的影响[J]. 山东大学学报 (医学版), 2020, 58(6): 14-21.
[14] 孙红林,韩波,王静,高聆,朱梅,姜殿东,吕建利. CD40siRNA调控c-Jun氨基末端激酶对自身免疫性心肌炎大鼠心肌细胞自噬的影响[J]. 山东大学学报 (医学版), 2019, 57(4): 9-14.
[15] 熊超,刘力,冯建国,魏继承. 七氟醚预处理对H9C2心肌细胞缺氧/复氧后转录沉默信息调节器3的表达及乙酰化水平的影响[J]. 山东大学学报 (医学版), 2019, 57(3): 25-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!