山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (9): 1-9.doi: 10.6040/j.issn.1671-7554.0.2023.0137
• 基础医学 • 下一篇
吕晓霖1,2,3,武颖丽1,2,3,杨宇1,2,3,公续金1,2,3,刘晏娜1,2,3,姚庆强1,2,3,4
LYU Xiaolin1,2,3, WU Yingli1,2,3, YANG Yu1,2,3, GONG Xujin1,2,3, LIU Yanna1,2,3, YAO Qingqiang1,2,3,4
摘要: 目的 合成能实现π-π堆叠和化学交联共同作用的两亲性嵌段共聚物PEG-b-P(TMC-COOH)-b-P(CL-Bz),提高胶束在血液循环中的稳定性以及药物在胶束中的滞留。 方法 通过含有苄基侧链的碳酸酯单体(TMC-Bz)构建了PEG-b-P(TMC-Bz)嵌段。然后,通过PEG-b-P(TMC-Bz)末端羟基引发使含有苯环侧链的己内酯单体(CL-Bz)开环聚合,生成PEG-b-P(TMC-Bz)-b-P(CL-Bz)。最后,在Pd/C作用下脱去P(TMC-Bz)中的苄基,构建出PEG-b-P(TMC-COOH)-b-P(CL-Bz)。对合成的单体及聚合物进行核磁共振氢谱(1H NMR)及凝胶渗透色谱(GPC)表征。另外,通过动态光散射(DLS)对基于该聚合物制备的(交联)空胶束及载药胶束进行表征,并通过GPC对交联反应时间以及交联剂用量对交联度的影响进行了探索。 结果 成功合成了PEG-b-P(TMC-COOH)-b-P(CL-Bz)聚合物。用该聚合物制备的交联聚合物胶束粒径较小(~80 nm)且均一,而且对紫杉醇的包封率可以达到90 %以上。基于聚合物中活化的羧基和交联剂胱胺二盐酸盐中的氨基的交联反应在12 h之内结束,且交联程度随着交联剂用量的增大而增大。 结论 成功构建了能实现π-π堆叠和化学交联共同作用的PEG-b-P(TMC-COOH)-b-P(CL-Bz)聚合物胶束给药系统。
中图分类号:
[1] Xiao HH, Yan LS, Dempsey EM, et al. Recent progress in polymer-based platinum drug delivery systems [J]. Prog Polym Sci, 2018, 87: 70-106. doi:10.1016/j.progpolymsci.2018.07.004. [2] Shi JJ, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities [J]. Nat Rev Cancer, 2017, 17(1): 20-37. [3] Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? [J]. J Control Release, 2016, 244(Pt A): 108-121. [4] Varela-Moreira A, Shi Y, Fens MHAM, et al. Clinical application of polymeric micelles for the treatment of cancer [J]. Mater Chem Front, 2017, 1(8): 1485-1501. [5] Ekladious I, Colson YL, Grinstaff MW. Polymer-drug conjugate therapeutics: advances, insights and prospects [J]. Nat Rev Drug Discov, 2019, 18(4): 273-294. [6] Deng X, Xu XH, Lai YS, et al. Novel nanoparticles generated by polymeric amphiphiles with pi-pi conjugated small molecules for anti-tumor drug delivery [J]. J Biomed Nanotechnol, 2013, 9(8): 1336-1344. [7] Feiner-Gracia N, Buzhor M, Fuentes E, et al. Micellar stability in biological media dictates internalization in living cells [J]. J Am Chem Soc, 2017, 139(46): 16677-16687. [8] Liu B, Thayumanavan S. Importance of evaluating dynamic encapsulation stability of amphiphilic assemblies in serum [J]. Biomacromolecules, 2017, 18(12): 4163-4170. [9] Lu Y, Zhang ES, Yang JH, et al. Strategies to improve micelle stability for drug delivery [J]. Nano Res, 2018, 11(10): 4985-4998. [10] Shi Y, Lammers T, Storm G, et al. Physico-chemical strategies to enhance stability and drug retention of polymeric micelles for tumor-targeted drug delivery [J]. Macromol Biosci, 2017, 17(1): 10.1002/mabi.201600160. doi: 10.1002/mabi.201600160. [11] Liu YN, Fens MHAM, Capomaccio RB, et al. Correlation between in vitro stability and pharmacokinetics of poly(ε-caprolactone)-based micelles loaded with a photosensitizer [J]. J Control Release, 2020, 328: 942-951. doi:10.1016/j.jconrel.2020.10.040. [12] Liu YN, Fens MHAM, Lou B, et al. π-π-stacked poly(ε-caprolactone)-b-poly(ethylene glycol)micelles loaded with a photosensitizer for photodynamic therapy [J]. Pharmaceutics, 2020, 12(4): 338. doi:10.3390/pharmaceutics12040338. [13] Shi Y, van Steenbergen MJ, Teunissen EA, et al. π-π stacking increases the stability and loading capacity of thermosensitive polymeric micelles for chemotherapeutic drugs [J]. Biomacromolecules, 2013, 14(6): 1826-1837. [14] Shi Y, Elkhabaz A, Yengej FA, et al. π-π stacking induced enhanced molecular solubilization, singlet oxygen production, and retention of a photosensitizer loaded in thermosensitive polymeric micelles [J]. Adv Healthc Mater, 2014, 3(12): 2023-2031. [15] Shi Y, Kunjachan S, Wu ZJ, et al. Fluorophore labeling of core-crosslinked polymeric micelles for multimodal in vivo and ex vivo optical imaging [J]. Nanomed-Nanotechnol Biol Med, 2015, 10(7): 1111-1125. [16] Goyal K, Konar A, Hemanth Kumar BSH, et al. Lactoferrin-conjugated pH and redox-sensitive polymersomes based on PEG-S-S-PLA-PCL-OH boost delivery of bacosides to the brain [J]. Nanoscale, 2018, 10(37): 17781-17798. [17] Greco F, Vicent MJ. Polymer-drug conjugates: current status and future trends [J]. Front Biosci, 2008, 13: 2744-2756. doi:10.2741/2882. [18] Pratt RC, Nederberg F, Waymouth RM, et al. Tagging alcohols with cyclic carbonate: a versatile equivalent of(meth)acrylate for ring-opening polymerization [J]. Chem Commun, 2008(1): 114-116. doi:10.1039/b713925j. [19] Ríos MY, Salazar E, Olivo HF. Baeyer-Villiger oxidation of substituted cyclohexanonesvia lipase-mediated perhydrolysis utilizing urea-hydrogen peroxide in ethyl acetate [J]. Green Chem, 2007, 9(5): 459-462. [20] Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines [J]. Adv Drug Deliv Rev, 2009, 61(13): 1203-1213. [21] Dreher MR, Liu WG, Michelich CR, et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers [J]. J Natl Cancer Inst, 2006, 98(5): 335-344. [22] Wei RR, Cheng L, Zheng M, et al. Reduction-responsive disassemblable core-cross-linked micelles based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid conjugates for triggered intracellular anticancer drug release [J]. Biomacromolecules, 2012, 13(8): 2429-2438. [23] Li YL, Zhu L, Liu ZZ, et al. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells [J]. Angew Chem Int Ed, 2009, 48(52): 9914-9918. |
[1] | 刘新,张佩,何文秀,栾玉霞. 氧化还原敏感PEO-PPO-SS-DTX聚合物胶束的构建及体外抗肿瘤评价[J]. 山东大学学报 (医学版), 2018, 56(6): 13-20. |
[2] | 谭琦,李娜,陶运明,唐浩,吴忠仕. 载血管内皮生长因子层层自组装提高异种去细胞血管生物相容性[J]. 山东大学学报(医学版), 2017, 55(5): 23-30. |
[3] | 于克炜1, 2,刘志红1,张娜1. 多西他赛Pluronic F68聚合物胶束的制备与体外评价[J]. 山东大学学报(医学版), 2011, 49(11): 156-160. |
|