您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2023, Vol. 61 ›› Issue (9): 1-9.doi: 10.6040/j.issn.1671-7554.0.2023.0137

• 基础医学 •    下一篇

π-π堆叠和化学交联共同作用的聚合物胶束的构建及表征

吕晓霖1,2,3,武颖丽1,2,3,杨宇1,2,3,公续金1,2,3,刘晏娜1,2,3,姚庆强1,2,3,4   

  1. 1.山东第一医科大学药学院(药物研究所), 山东 济南 250117;2.国家卫生健康委生物技术药物重点实验室(山东省医学科学院), 山东 济南 250117;3.山东省罕见病重点实验室, 山东 济南 250117;4.济宁医学院, 山东 济宁 272067
  • 收稿日期:2023-02-14 发布日期:2023-10-10
  • 通讯作者: 刘晏娜. E-mail:liuyanna@sdfmu.edu.cn姚庆强. E-mail:qqyao@sdfmu.edu.cn
  • 基金资助:
    山东省自然科学基金(ZR202103020117);山东第一医科大学学术提升计划(2019LJ003)

Development and characterization of π-π stacked and chemical crosslinked polymeric micelles

LYU Xiaolin1,2,3, WU Yingli1,2,3, YANG Yu1,2,3, GONG Xujin1,2,3, LIU Yanna1,2,3, YAO Qingqiang1,2,3,4   

  1. 1. School of Pharmaceutical Sciences &
    Institute of Materia Medica, Shandong First Medical University &
    Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China;
    2. NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan 250117, Shandong, China;
    3. Key Lab for Rare &
    Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China;
    4. Jining Medical University, Jining 272067, Shandong, China
  • Received:2023-02-14 Published:2023-10-10

摘要: 目的 合成能实现π-π堆叠和化学交联共同作用的两亲性嵌段共聚物PEG-b-P(TMC-COOH)-b-P(CL-Bz),提高胶束在血液循环中的稳定性以及药物在胶束中的滞留。 方法 通过含有苄基侧链的碳酸酯单体(TMC-Bz)构建了PEG-b-P(TMC-Bz)嵌段。然后,通过PEG-b-P(TMC-Bz)末端羟基引发使含有苯环侧链的己内酯单体(CL-Bz)开环聚合,生成PEG-b-P(TMC-Bz)-b-P(CL-Bz)。最后,在Pd/C作用下脱去P(TMC-Bz)中的苄基,构建出PEG-b-P(TMC-COOH)-b-P(CL-Bz)。对合成的单体及聚合物进行核磁共振氢谱(1H NMR)及凝胶渗透色谱(GPC)表征。另外,通过动态光散射(DLS)对基于该聚合物制备的(交联)空胶束及载药胶束进行表征,并通过GPC对交联反应时间以及交联剂用量对交联度的影响进行了探索。 结果 成功合成了PEG-b-P(TMC-COOH)-b-P(CL-Bz)聚合物。用该聚合物制备的交联聚合物胶束粒径较小(~80 nm)且均一,而且对紫杉醇的包封率可以达到90 %以上。基于聚合物中活化的羧基和交联剂胱胺二盐酸盐中的氨基的交联反应在12 h之内结束,且交联程度随着交联剂用量的增大而增大。 结论 成功构建了能实现π-π堆叠和化学交联共同作用的PEG-b-P(TMC-COOH)-b-P(CL-Bz)聚合物胶束给药系统。

关键词: 聚合物合成, 开环聚合, 化学交联, π-π堆积, 聚合物胶束

Abstract: Objective To improve the stability of micelles in blood circulation and the retention of drugs in micelles by synthesizing amphiphilic block copolymer PEG-b-P(TMC-COOH)-b-P(CL-Bz). Methods PEG-b-P(TMC-Bz)block was firstly synthesized by carbonate monomers(TMC-Bz)containing benzyl side chains. Then, PEG-b-P(TMC-Bz)-b-P(CL-Bz)containing benzyl side chains was synthesized using hydroxyl end groups of PEG-b-P(TMC-Bz)as initiator. Finally, the benzyl group in P(TMC-Bz)was removed under Pd/C to obtain PEG-b-P(TMC-COOH)-b-P(CL-Bz). The synthesized monomers and polymers were characterized by nuclear magnetic resonance hydrogen spectroscopy(1H NMR)and gel permeation chromatography(GPC). In addition, the empty and drug-loaded crosslinked micelles prepared by the resulting polymer were characterized by dynamic light scattering(DLS), and the effects of crosslinking reaction time and the amount of crosslinking agent on crosslinking degree were explored by GPC. Results PEG-b-P(TMC-COOH)-b-P(CL-Bz)polymer was successfully synthesized. The crosslinked polymer micelles prepared had a small and uniform particle size(about 80 nm), and the loading efficiency of paclitaxel in the micelles reached more than 90%. The crosslinking reaction based on the activated carboxyl group in the polymer and the amino group in the crosslinker cystamine dihydrochloride ended within 12 h, and the degree of crosslinking increased with the increase of the amount of crosslinker. Conclusion The PEG-b-P(TMC-COOH)-b-P(CL-Bz)polymeric micelles as a drug delivery system were successfully developed, which can realize the interaction of π-π stacking and chemical crosslinking.

Key words: Polymer synthesis, Ring-opening polymerization, Chemical crosslinking, π-π stack, Polymeric micelles

中图分类号: 

  • R94
[1] Xiao HH, Yan LS, Dempsey EM, et al. Recent progress in polymer-based platinum drug delivery systems [J]. Prog Polym Sci, 2018, 87: 70-106. doi:10.1016/j.progpolymsci.2018.07.004.
[2] Shi JJ, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities [J]. Nat Rev Cancer, 2017, 17(1): 20-37.
[3] Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? [J]. J Control Release, 2016, 244(Pt A): 108-121.
[4] Varela-Moreira A, Shi Y, Fens MHAM, et al. Clinical application of polymeric micelles for the treatment of cancer [J]. Mater Chem Front, 2017, 1(8): 1485-1501.
[5] Ekladious I, Colson YL, Grinstaff MW. Polymer-drug conjugate therapeutics: advances, insights and prospects [J]. Nat Rev Drug Discov, 2019, 18(4): 273-294.
[6] Deng X, Xu XH, Lai YS, et al. Novel nanoparticles generated by polymeric amphiphiles with pi-pi conjugated small molecules for anti-tumor drug delivery [J]. J Biomed Nanotechnol, 2013, 9(8): 1336-1344.
[7] Feiner-Gracia N, Buzhor M, Fuentes E, et al. Micellar stability in biological media dictates internalization in living cells [J]. J Am Chem Soc, 2017, 139(46): 16677-16687.
[8] Liu B, Thayumanavan S. Importance of evaluating dynamic encapsulation stability of amphiphilic assemblies in serum [J]. Biomacromolecules, 2017, 18(12): 4163-4170.
[9] Lu Y, Zhang ES, Yang JH, et al. Strategies to improve micelle stability for drug delivery [J]. Nano Res, 2018, 11(10): 4985-4998.
[10] Shi Y, Lammers T, Storm G, et al. Physico-chemical strategies to enhance stability and drug retention of polymeric micelles for tumor-targeted drug delivery [J]. Macromol Biosci, 2017, 17(1): 10.1002/mabi.201600160. doi: 10.1002/mabi.201600160.
[11] Liu YN, Fens MHAM, Capomaccio RB, et al. Correlation between in vitro stability and pharmacokinetics of poly(ε-caprolactone)-based micelles loaded with a photosensitizer [J]. J Control Release, 2020, 328: 942-951. doi:10.1016/j.jconrel.2020.10.040.
[12] Liu YN, Fens MHAM, Lou B, et al. π-π-stacked poly(ε-caprolactone)-b-poly(ethylene glycol)micelles loaded with a photosensitizer for photodynamic therapy [J]. Pharmaceutics, 2020, 12(4): 338. doi:10.3390/pharmaceutics12040338.
[13] Shi Y, van Steenbergen MJ, Teunissen EA, et al. π-π stacking increases the stability and loading capacity of thermosensitive polymeric micelles for chemotherapeutic drugs [J]. Biomacromolecules, 2013, 14(6): 1826-1837.
[14] Shi Y, Elkhabaz A, Yengej FA, et al. π-π stacking induced enhanced molecular solubilization, singlet oxygen production, and retention of a photosensitizer loaded in thermosensitive polymeric micelles [J]. Adv Healthc Mater, 2014, 3(12): 2023-2031.
[15] Shi Y, Kunjachan S, Wu ZJ, et al. Fluorophore labeling of core-crosslinked polymeric micelles for multimodal in vivo and ex vivo optical imaging [J]. Nanomed-Nanotechnol Biol Med, 2015, 10(7): 1111-1125.
[16] Goyal K, Konar A, Hemanth Kumar BSH, et al. Lactoferrin-conjugated pH and redox-sensitive polymersomes based on PEG-S-S-PLA-PCL-OH boost delivery of bacosides to the brain [J]. Nanoscale, 2018, 10(37): 17781-17798.
[17] Greco F, Vicent MJ. Polymer-drug conjugates: current status and future trends [J]. Front Biosci, 2008, 13: 2744-2756. doi:10.2741/2882.
[18] Pratt RC, Nederberg F, Waymouth RM, et al. Tagging alcohols with cyclic carbonate: a versatile equivalent of(meth)acrylate for ring-opening polymerization [J]. Chem Commun, 2008(1): 114-116. doi:10.1039/b713925j.
[19] Ríos MY, Salazar E, Olivo HF. Baeyer-Villiger oxidation of substituted cyclohexanonesvia lipase-mediated perhydrolysis utilizing urea-hydrogen peroxide in ethyl acetate [J]. Green Chem, 2007, 9(5): 459-462.
[20] Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines [J]. Adv Drug Deliv Rev, 2009, 61(13): 1203-1213.
[21] Dreher MR, Liu WG, Michelich CR, et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers [J]. J Natl Cancer Inst, 2006, 98(5): 335-344.
[22] Wei RR, Cheng L, Zheng M, et al. Reduction-responsive disassemblable core-cross-linked micelles based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid conjugates for triggered intracellular anticancer drug release [J]. Biomacromolecules, 2012, 13(8): 2429-2438.
[23] Li YL, Zhu L, Liu ZZ, et al. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells [J]. Angew Chem Int Ed, 2009, 48(52): 9914-9918.
[1] 刘新,张佩,何文秀,栾玉霞. 氧化还原敏感PEO-PPO-SS-DTX聚合物胶束的构建及体外抗肿瘤评价[J]. 山东大学学报 (医学版), 2018, 56(6): 13-20.
[2] 谭琦,李娜,陶运明,唐浩,吴忠仕. 载血管内皮生长因子层层自组装提高异种去细胞血管生物相容性[J]. 山东大学学报(医学版), 2017, 55(5): 23-30.
[3] 于克炜1, 2,刘志红1,张娜1. 多西他赛Pluronic F68聚合物胶束的制备与体外评价[J]. 山东大学学报(医学版), 2011, 49(11): 156-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马青源,蒲沛东,韩飞,王超,朱洲均,王维山,史晨辉. miR-27b-3p调控SMAD1对骨肉瘤细胞增殖、迁移和侵袭作用的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 32 -37 .
[2] 索东阳,申飞,郭皓,刘力畅,杨惠敏,杨向东. Tim-3在药物性急性肾损伤动物模型中的表达及作用机制[J]. 山东大学学报 (医学版), 2020, 1(7): 1 -6 .
[3] 龙婷婷,谢明,周璐,朱俊德. Noggin蛋白对小鼠脑缺血再灌注损伤后学习和记忆能力与齿状回结构的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 15 -23 .
[4] 李宁,李娟,谢艳,李培龙,王允山,杜鲁涛,王传新. 长链非编码RNA AL109955.1在80例结直肠癌组织中的表达及对细胞增殖与迁移侵袭的影响[J]. 山东大学学报 (医学版), 2020, 1(7): 38 -46 .
[5] 张宝文,雷香丽,李瑾娜,罗湘俊,邹容. miR-21-5p靶向调控TIMP3抑制2型糖尿病肾病小鼠肾脏系膜细胞增殖及细胞外基质堆积[J]. 山东大学学报 (医学版), 2020, 1(7): 7 -14 .
[6] 付洁琦,张曼,张晓璐,李卉,陈红. Toll样受体4抑制过氧化物酶体增殖物激活受体γ加重血脂蓄积的分子机制[J]. 山东大学学报 (医学版), 2020, 1(7): 24 -31 .
[7] 丁祥云,于清梅,张文芳,庄园,郝晶. 胰岛素样生长因子II在84例多囊卵巢综合征患者颗粒细胞中的表达和促排卵结局的相关性[J]. 山东大学学报 (医学版), 2020, 1(7): 60 -66 .
[8] 徐玉香,刘煜东,张蓬,段瑞生. 101例脑小血管病患者脑微出血危险因素的回顾性分析[J]. 山东大学学报 (医学版), 2020, 1(7): 67 -71 .
[9] 肖娟,肖强,丛伟,李婷,丁守銮,张媛,邵纯纯,吴梅,刘佳宁,贾红英. 两种甲状腺超声数据报告系统诊断效能的比较[J]. 山东大学学报 (医学版), 2020, 1(7): 53 -59 .
[10] 史爽,李娟,米琦,王允山,杜鲁涛,王传新. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报 (医学版), 2020, 1(7): 47 -52 .