您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报 (医学版) ›› 2019, Vol. 57 ›› Issue (6): 94-99.doi: 10.6040/j.issn.1671-7554.0.2018.1397

• • 上一篇    

弹性应变率比值法与声触诊组织量化技术对乳腺肿块的诊断价值

商蒙蒙1,张岩2,程琳1,孙霄1,时丹丹1,闵香3,李杰1   

  1. 1. 山东大学齐鲁医院超声科, 山东 济南 250012;2. 山东省水利厅机关服务中心卫生保健科, 山东 济南 250013; 3. 山东大学齐鲁医院健康体检中心, 山东 济南 250012
  • 发布日期:2022-09-27
  • 通讯作者: 李杰. Email:jieli301@163.com
  • 基金资助:
    济南市科技发展计划(201704084)

Value of strain ratio of compression elastography and virtual touch tissue quantification in the diagnosis of breast lesions

SHANG Mengmeng1, ZHANG Yan2, CHENG Lin1, SUN Xiao1, SHI Dandan1, MIN Xiang3, LI Jie1   

  1. 1. Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China;
    2. Department of Healthcare, Service Center, Water Resources Department of Shandong Province, Jinan 250013, Shandong, China;
    3. Center of Health Examination, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
  • Published:2022-09-27

摘要: 目的 比较弹性应变率比值法与声触诊组织量化(VTQ)技术对乳腺肿块的诊断价值。 方法 经手术病理证实的49例女性乳腺疾病患者共计52个乳腺肿块进行压迫式弹性成像和VTQ检查,分别测量肿块与周围正常腺体的应变率比值、肿块内部的剪切波传播速度。构建受试者工作特征(ROC)曲线,分析两种超声弹性成像方法对乳腺肿块的诊断价值,并采用Z检验进行比较。 结果 弹性应变率比值法鉴别乳腺良恶性病变的曲线下面积为0.919,最优诊断界点为0.499,灵敏度、特异度、阳性预测值、阴性预测值、准确率分别为93.6%、72.0%、78.8%、94.7%、84.6%;VTQ技术鉴别诊断乳腺良恶性病变的曲线下面积为0.796,最优诊断界点为2.90 m/s,灵敏度、特异度、阳性预测值、阴性预测值、准确率分别为68.0%、92.6%、89.5%、75.8%、80.8%。两种超声弹性成像方法的ROC曲线下面积比较差异无统计学意义(Z=1.580,P=0.057)。两者联合鉴别诊断乳腺良恶性病变,灵敏度为84.0%,特异度为88.9%,PPV为87.5%,NPV为85.7%,准确率为86.5%。 结论 弹性应变率比值法与VTQ技术能够(半)定量评价乳腺肿块的硬度,两者对乳腺肿块的鉴别诊断价值相近。弹性应变率比值法的灵敏度高于VTQ技术,而特异度却低于VTQ技术。两者联合应用可提高超声鉴别诊断乳腺良恶性病变的灵敏度、特异度和准确率。

关键词: 弹性成像, 应变率, 声触诊组织量化, 乳腺肿瘤, 超声检查

Abstract: Objective To compare the diagnostic performances of strain ratio of compression elastography and virtual touch tissue quantification(VTQ)in the differentiation of benign and malignant breast lesions. Methods A total of 49 female patients with 52 breast lesions were enrolled in this study. Both compression elastography and VTQ were performed, and SR and shear wave velocity were measured. Receiver operating characteristic(ROC)curves were used to analyze the diagnostic performances and Z tests were used to compare the area under the curve. Results For the SR method, the AUC, optimal cutoff value, sensitivity, specificity, positive predictive value, negative predictive value(NPV)and accuracy was 0.919, 0.499, 93.6%, 72.0%, 78.8%, 94.7%, and 84.6%, respectively. For the VTQ method, the AUC, optimal cutoff value, sensitivity, specificity, PPV, NPV and accuracy was 0.796, 2.90 m/s, 68.0%, 山 东 大 学 学 报 (医 学 版)57卷6期 -商蒙蒙,等.弹性应变率比值法与声触诊组织量化技术对乳腺肿块的诊断价值 \=-92.6%, 89.5%, 75.8% and 80.8%, respectively. There was no significant difference in AUC between the two methods (Z=1.580, P=0.057). When compression elastography and VTQ were used in combination, the sensitivity, specificity, PPV, NPV and accuracy was 84.0%, 88.9%, 87.5%, 85.7% and 86.5%, respectively. Conclusion Both SR and VTQ are helpful in the(semi-)quantitative evaluation of the stiffness of breast lesions. Their diagnostic performances are similar. The SR method shows higher sensitivity but lower specificity than VTQ. The combination of compression elastography and VTQ can significantly improve the diagnostic performance of ultrasound to differentiate benign and malignant breast lesions.

Key words: Elastography, Strain ratio, Virtual touch tissue quantification, Breast lesion, Ultrasonography

中图分类号: 

  • R445.1
[1] Ophir J, Cespedes I, Ponnekanti H, et al. Elastography: a quantitative method for imaging the elasticity of biological tissues [J]. Ultrason Imaging, 1991, 13(2): 111-134.
[2] Hooley RJ, Scoutt LM, Philpotts LE. Breast ultrasonography: state of art [J]. Radiology, 2013, 268(3): 642-659.
[3] Barr RG. Sonographic breast elastography: a primer [J]. J Ultrasound Med, 2012, 31(5): 773-783.
[4] Ricci P, Maggini E, Mancuso E, et al. Clinical application of breast elastography: state of the art [J]. Eur J Radiol, 2014, 83(3): 429-437.
[5] Bamber J, Cosgrove D, Dietrich CF, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology [J]. Ultraschall Med, 2013, 34(2): 169-184.
[6] Cosgrove D, Piscaglia F, Bamber J, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications [J]. Ultraschall Med, 2013, 34(3): 238-253.
[7] American College of Radiology(ACR). ACR BI-RADS-Ultrasound/ ACR Breast Imaging Reporting and Data System, Breast Imaging Atlas [S]. Reston: American College of Radiology, 2013.
[8] 周建桥, 詹维伟. 超声乳腺影像报告数据系统及其解读[J]. 中华医学超声杂志(电子版), 2011, 8(6): 1332-1341.
[9] 吴长君, 张光晨, 孟巍, 等. 声触诊组织量化技术鉴别乳腺良恶性肿块的价值[J]. 中华超声影像学杂志, 2011, 20(11): 965-967. WU Changjun ZHANG Guangchen MENG Wei, et al. Diagnostic value of virtual tough tissues quantification in discriminating breast benign and malignant solid tumor [J]. Chinese Journal of Ultrasonography, 2011, 20(11): 965-967.
[10] Hudert CA, TzschTzsch H, Guo J, et al. US time-harmonic elastography: detection of liver fibrosis in adolescents with extreme obesity with nonalcoholic fatty liver disease [J]. Radiology, 2018, 288(1): 99-106.
[11] Grenier N, Gennisson JL, Cornelis F, et al. Renal ultrasound elastography [J]. Diagn Interv Imaging, 2013, 94(5): 545-550.
[12] Magri F, Chytiris S, Chiovato L. The role of elastography in thyroid ultrasonography [J]. Curr Opin Endocrinol Diabetes Obes, 2016, 23(5): 416-422.
[13] Terminology and Diagnostic Criteria Committee, Japan Society of Ultrasonics in Medicine. Clinical practice guidelines for ultrasound elastography: prostate [J]. J Med Ultrason(2001), 2016, 43(3): 449-455.
[14] Balleyguier C, Ciolovan L, Ammari S, et al. Breast elastography: the technical process and its applications [J]. Diagn Interv Imaging, 2013, 94(5): 503-513.
[15] Li GY, Cao Y. Mechanics of ultrasound elastography [J]. Proc Math Phys Eng Sci, 2017, 473(2199): 20160841.
[16] Zhao QL, Ruan LT, Zhang H, et al. Diagnosis of solid breast lesions by elastography 5-point score and strain ratio method [J]. Eur J Radiol, 2012, 81(11): 3245-3249.
[17] Liu B, Zheng Y, Shan Q, et al. Elastography by acoustic radiation force impulse technology for differentiation of benign and malignant breast lesions: a meta-analysis [J]. J Med Ultrason(2001), 2016, 43(1): 47-55.
[18] Jayaraman J, Indiran V, Kannan K, et al. Acoustic radiation force impulse imaging in benign and malignant breast lesions [J]. Cureus, 2017, 9(6): 1301.
[19] Barr RG, De Silvestri A, Scotti V, et al. Diagnostic performance and accuracy of the 3 interpreting methods of breast strain elastography: a systematic review and Meta-analysis [J]. J Ultrasound Med, 2019, 38(6): 1397-1404.
[20] Yoon JH, Song MK, Kim EK. Semi-quantitative strain ratio determined using different measurement methods: comparison of strain ratio values and diagnostic performance using one- versus two-region-of-interest measurement [J]. Ultrasound Med Biol, 2017, 43(5): 911-917.
[21] Yoon JH, Kim MH, Kim EK, et al. Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions [J]. AJR Am J Roentgenol, 2011, 196(3): 730-736.
[22] Deffieux T, Gennisson JL, Bercoff J, et al. On the effects of reflected waves in transient shear wave elastography [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2011, 58(10): 2032-2035.
[23] 欧冰, 智慧, 杨海云, 等. 比较声触诊组织量化技术与弹性应变率比值法诊断乳腺疾病[J]. 中国医学影像技术, 2012, 28(10): 1835-1838. OU Bing, ZHI Hui, YANG Haiyun, et al. Comparison of virtual tissue quantification and strain ratio of ultrasonic elastographpy in differential diagnosis of benign or malignant breast lesions[J]. Chinese Journal of Medical Imaging Technology, 2012, 28(10): 1835-1838.
[24] Franchi-Abella S, Elie C, Correas JM. Performances and limitations of several ultrasound-based elastography techniques: a phantom study [J]. Ultrasound Med Biol, 2017, 43(10): 2402-2415.
[25] Chang JM, Moon WK, Cho N, et al. Breast mass evaluation: factors influencing the quality of US elastography [J]. Radiology, 2011, 259(1): 59-64.
[1] 徐平 于国放 李霞. 不同类型甲状腺上动脉PSV对Graves病与桥本氏甲状腺炎鉴别诊断的价值[J]. 山东大学学报(医学版), 2209, 47(6): 62-64.
[2] 陶国伟,王芳,董向毅,徐亚瑄,赵琳丽,胡蓓蓓. 子宫腺肌病的超声与MRI诊断及进展[J]. 山东大学学报 (医学版), 2022, 60(7): 56-65.
[3] 游雪婷,田兴松. 3 514例乳腺癌9年间临床及病理学特征分析[J]. 山东大学学报 (医学版), 2021, 59(1): 49-54.
[4] 李良,葛娜,孙霄,李杰,朱江,李忠良. 两种声触诊组织定量技术鉴别乳腺包块良恶性的价值[J]. 山东大学学报 (医学版), 2018, 56(4): 70-75.
[5] 盛璇,王永娥,郭丹,兰梦,范凤景,丁红宇. 移植肾患者体质量指数与移植肾皮下深度对声触诊组织量化成像结果的影响[J]. 山东大学学报 (医学版), 2018, 56(12): 68-72.
[6] 孟繁超,冯鹭,邵广瑞. 人乳腺癌细胞系MCF-7中FOXM1调控SYK转录[J]. 山东大学学报(医学版), 2017, 55(3): 19-24.
[7] 田斯琦,刘日强,杨宁,韦薇,杨华伟. 核糖体S6蛋白激酶4变异体基因表达对乳腺癌细胞增殖的影响[J]. 山东大学学报(医学版), 2016, 54(9): 32-36.
[8] 范凤景,张广英,曹淑娟,丁红宇,刘德泉. 声触诊组织量化技术在乳腺肿块定性诊断中的价值[J]. 山东大学学报(医学版), 2016, 54(9): 48-52.
[9] 吴世秀,李杰,贾汇刚,李金娥,崔琳玲,路红. 彩色多普勒超声对下肢动脉硬化闭塞症胫前动脉窃血的诊断价值[J]. 山东大学学报(医学版), 2016, 54(6): 78-81.
[10] 李进叶,宋歌声,宋吉清,王大伟,靳先文,张成琪. 宝石能谱CT与常规超声对甲状腺结节良恶性诊断价值的对照分析[J]. 山东大学学报(医学版), 2016, 54(3): 81-86.
[11] 李冉冉,张鹏飞,袁冰,房菲菲, 韩明勇. 乳腺癌MCF-7细胞分泌的血管内皮生长因子诱导血管内皮细胞免疫功能抑制[J]. 山东大学学报(医学版), 2016, 54(2): 38-43.
[12] 包洪靖,王光彬,王姗姗,吴超. MR扩散加权神经成像技术对腕管综合征的诊断价值[J]. 山东大学学报(医学版), 2016, 54(11): 72-75.
[13] 高永生, 王春健, 蔡淑萍, 孙菊杰, 张德贤, 孙妍琳, 穆殿斌. Netrin-1在乳腺浸润性导管癌中的表达及与转移的相关性[J]. 山东大学学报(医学版), 2015, 53(7): 39-42.
[14] 初海鹏, 谭秀梅, 卢战凯. 阴道超声和血绒毛膜促性腺激素联合检测在异位妊娠诊断中的应用[J]. 山东大学学报(医学版), 2014, 52(Z1): 138-139.
[15] 孙莹, 于晶, 魏军民, 樊聪, 王秀问, 高鹏, 江立玉, 马婷婷. 35岁以下女性乳腺癌患者的临床病理特征[J]. 山东大学学报(医学版), 2014, 52(7): 71-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!