您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(医学版)》

山东大学学报(医学版) ›› 2016, Vol. 54 ›› Issue (11): 56-63.doi: 10.6040/j.issn.1671-7554.0.2016.901

• 临床医学 • 上一篇    下一篇

经皮内固定术与传统后路开放内固定术治疗胸腰椎骨折不良事件比较的Meta分析

孙祥耀,海涌,张希诺   

  1. 首都医科大学附属北京朝阳医院骨科, 北京 100020
  • 收稿日期:2016-07-26 出版日期:2016-11-10 发布日期:2016-11-10
  • 通讯作者: 海涌. E-mail:spinesurgeon@163.com E-mail:spinesurgeon@163.com

Comparison of the adverse events of percutaneous pedicle screw fixation and traditional open pedicle screw fixation for thoracolumbar fractures: a Meta-analysis

SUN Xiangyao, HAI Yong, ZHANG Xinuo   

  1. Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
  • Received:2016-07-26 Online:2016-11-10 Published:2016-11-10

摘要: 目的 系统评价经皮椎弓根螺钉内固定术(PPSF)与传统后路开放内固定术(TOPSF)治疗胸腰椎骨折时出现的不良事件,为胸腰椎骨折治疗方法安全性的评估提供科学依据。 方法 计算机检索从建库至2016年3月PubMed、EMbase、Cochrane图书馆等中英文数据库。手工检索《The Journal of Bone and Joint Surgery》、《Spine》、《European Spine Journal》等期刊。英文检索词为thoracolumbar fracture 、lumbar fracture 、percutaneous pedicle screw fixation、 open fixation、posterior surgery、sextant、 traditional fixation、 conventional fixation、 minimally invasive surgery、 comparative study、 randomized controlled trail、 clinical trail等;中文检索词为经皮内固定术、后路内固定术、胸腰段骨折等。根据纳入标准进行筛选、数据提取、质量评价。采用RevMan 5.3进行Meta分析。 结果 最后纳入18项研究,其中随机对照试验4项,前瞻性对比研究3项,回顾性对比研究11项,共计1 034例,其中PPSF组501例,TOPSF组533例。Meta分析显示:与TOPSF组相比,PPSF组手术时间短(WMD=-0.95, 95%CI: -1.33~-0.57, P<0.001)、术中出血量少(WMD=-2.97, 95%CI: -3.69~-2.25, P<0.001)、术后引流量少(WMD=-2.43, 95%CI: -3.04~-1.83, P<0.001)、住院时间短(WMD=-5.37, 95%CI: -6.69~-4.05, P<0.001)、下床活动时间早(WMD=-2.51, 95%CI: -3.66~-1.36, P<0.001)、总体术后VAS评分低(WMD=-1.14, 95%CI: -1.62~-0.66, P<0.001)、术后ODI评分低(WMD=-1.78, 95%CI: -3.00~-0.55, P=0.004)、术后Cobb角矫正度丢失低(WMD=-0.52, 95%CI: -0.93~-0.11, P=0.01)、术中辐射暴露时间长(WMD=5.12, 95%CI: 2.89~7.34, P<0.001)、两种术式椎弓根螺钉位置异常差异无统计学意义(OR=1.04, 95%CI: 0.43~2.56, P=0.92),术后感染差异无统计学意义(OR=0.39, 95%CI: 0.12~1.26, P=0.12)。 结论 PPSF能够缩短手术时间、减少手术出血量、减小手术创伤等,能够达到与TOPSF相似的置钉准确度,保证手术安全性,有效的保护周围软组织,减少术后Cobb角矫正度的丢失,降低术后疼痛及功能恢复异常等不良事件的发生率。

关键词: 微创, 经皮内固定术, 胸腰椎骨折, 传统后路开放内固定术, 不良事件, Meta分析

Abstract: Objective To systematically review the adverse events of percutaneous pedicle screw fixation(PPSF)and traditional open pedicle screw fixation(TOPSF)for thoracolumbar fracture, in order to provide more evidence for the effective treatment of thoracolumbar fracture. Methods Databases including Pubmed, Cochrane Central Register of Controlled Trails(CENTRAL), and Embase were retrieved with computer. Journal of Bone and Joint Surgery, Spine, 山 东 大 学 学 报 (医 学 版)54卷11期 -孙祥耀,等.经皮内固定术与传统后路开放内固定术治疗胸腰椎骨折不良事件比较的Meta分析 \=-and European Spine Journal were manually searched. The searching terms were thoracolumbar fracture, lumbar fracture, percutaneous pedicle screw fixation, open fixation, posterior surgery, sextant, traditional fixation, conventional fixation, minimally invasive surgery, comparative study, randomized controlled trail, and clinical trail. Data were then screened, extracted, assessed, and analyzed with RevMan 5.3 software. Results A total of 18 studies including 4 randomized controlled trials, 3 prospective comparative studies, 11 retrospective comparative studies were enrolled, involving 1,034 patients. Meta-analysis showed that the PPSF group, compared with the TOPSF group, had shorter surgery time(WMD=-0.95, 95%CI: -1.33 - 0.57, P<0.001), less intraoperative blood loss(WMD=-2.97, 95%CI: -3.69 - 2.25, P<0.001), less postoperative drainage amount(WMD=-2.43, 95%CI: -3.04 - 1.83, P<0.001), shorter hospital stay(WMD=-5.37, 95%CI: -6.69 - 4.05, P<0.001), less time from surgery to walking(WMD=-2.51, 95%CI: -3.66 - 1.36, P<0.001), less overall postoperative visual analogue scale(WMD=-1.14, 95%CI: -1.62 - 0.66, P<0.001), lower postoperative Oswestry disability index(WMD=-1.78, 95%CI: -3.00 - 0.55, P=0.004), less postoperative Cobb angle correction loss(WMD=-0.52, 95%CI: -0.93 - 0.11, P=0.01), longer intraoperative exposure to radiation(WMD=5.12, 95%CI: 2.89-7.34, P<0.001). However, no significant difference was found between the two groups with regard to the rate of screw misplacement(OR=1.04, 95%CI: 0.43-2.56, P=0.92)and the rate of infection(OR=0.39, 95%CI: 0.12-1.26, P=0.12). Conclusion PPSF can not only shorten surgery time, hospital stay, and time from surgery to walking, but also lessen intraoperative blood loss, postoperative drainage amount, postoperative visual analogue scale, postoperative Oswestry disability index, and postoperative Cobb angle correction loss, but achieve the same accuracy in pedicle screw placement as TOPSF and secure the operation. Meanwhile, PPSF can protect the surrounding soft tissues, and reduce the rate of adverse events.

Key words: Thoracolumbar fractures, Minimally invasive, Percutaneous internal fixation, Traditional open pedicle screw fixation, Adverse events, Meta-analysis

中图分类号: 

  • R681.4
[1] Vanek P, Bradac O, Konopkova R, et al. Treatment of thoracolumbar trauma by short-segment percutaneous transpedicular screw instrumentation: prospective comparative study with a minimum 2-year follow-up[J]. J Neurosurg Spine, 2014, 20(2): 150-156.
[2] Gelalis ID, Paschos NK, Pakos EE, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques[J]. Eur Spine J, 2012, 21(2): 247-255.
[3] Kawaguchi Y, Yabuki S, Styf J, et al. Back muscle injury after posterior lumbar spine surgery. Topographic evaluation of intramuscular pressure and blood flow in the porcine back muscle during surgery[J]. Spine(Phila Pa 1976), 1996, 21(22): 2683-2688.
[4] Mayer TG, Vanharanta H, Gatchel RJ, et al. Comparison of CT scan muscle measurements and isokinetic trunk strength in postoperative patients[J]. Spine(Phila Pa 1976), 1989, 14(1): 33-36.
[5] Foley KT, Holly LT, Schwender JD. Minimally invasive lumbar fusion[J]. Spine(Phila Pa 1976), 2003, 28(15): 26-35.
[6] Khoo LT, Palmer S, Laich DT, et al. Minimally invasive percutaneous posterior lumbar interbody fusion[J]. Neurosurgery, 2002, 51(5): 166-181.
[7] Rampersaud YR, Annand N, Dekutoski MB. Use of minimally invasive surgical techniques in the management of thoracolumbar trauma: current concepts[J]. Spine(Phila Pa 1976), 2006, 31(11): 96-102.
[8] Smith JS, Ogden AT, Fessler RG. Minimally invasive posterior thoracic fusion[J]. Neurosurg Focus, 2008, 25(2): 9.
[9] Pariente A. Analyze and use the results of clinical studies in the context of good use. Critical analysis, clinical research and levels of evidence[J]. Rev Prat, 2013, 63(9): 1305-1310.
[10] 陈卓, 赵俊强, 付俊伟, 等. 微创椎弓根钉内固定治疗胸腰椎创伤性骨折[J]. 中华医学杂志, 2010, 90(21): 1491-1493. CHEN Zuo, ZHAO Junqiang, FU Junwei, et al. Modified minimally invasive percutaneous pedicle screws osteosynthesis for the treatment of thoracolumbar fracture without neural impairment[J]. National Medical Journal of China, 2010, 90(21): 1491-1493.
[11] Grass R, Biewener A, Dickopf A, et al. Percutaneous dorsal versus open instrumentation for fractures of the thoracolumbar border. A comparative, prospective study[J]. Unfallchirurg, 2006, 109(4): 297-305.
[12] Grossbach AJ, Dahdaleh NS, Abel TJ, et al. Flexion-distraction injuries of the thoracolumbar spine: open fusion versus percutaneous pedicle screw fixation[J]. Neurosurg Focus, 2013, 35(2): 2.
[13] Lee JK, Jang JW, Kim TW, et al. Percutaneous short-segment pedicle screw placement without fusion in the treatment of thoracolumbar burst fractures: is it effective?: comparative study with open short-segment pedicle screw fixation with posterolateral fusion[J]. Acta Neurochir(Wien), 2013, 155(12): 2305-2312.
[14] 李勤, 田伟, 刘波, 等. 导航辅助微创经皮穿刺椎弓根内固定术治疗胸腰椎骨折的疗效观察[J]. 中华医学杂志, 2007, 87(19): 1339-1341. LI Qin, TIAN Wei, LIU Bo, et al. Percutaneous pedicle screw fixation in thoracic-lumbar fracture using mini-invasive pedicle screw system guided by navigation[J]. National Medical Journal of China, 2007, 87(19): 1339-1341.
[15] Lyu J, Chen K, Tang Z, et al. A comparison of three different surgical procedures in the treatment of type A thoracolumbar fractures: a randomized controlled trial[J]. Int Orthop, 2016, 40(6): 1233-1238.
[16] Ming JH, Zheng HF, Zhao Q, et al. Sextant percutaneous pedicle screw fixation for correcting single-segment thoracolumbar fractures[J]. Chinese Journal of Tissue Engineering Research, 2014, 18(35): 5654-5659.
[17] 聂锋锋, 张英华, 黄寿国, 等. 经皮微创椎弓根螺钉内固定与开放手术治疗胸腰椎骨折: Cobbs角与椎体前缘高度恢复的比较[J]. 中国组织工程研究, 2014, 44: 7094-7099. NIE Fengfeng, ZHANG Yinghua, HUANG Shouguo, et al. Minimally invasive percutaneous pedicle screw fixation versus open surgery for thoracolumbar fracture: Cobbs angle and vertebral height[J]. Chinese Journal of Tissue Engineering Research, 2014, 18(44): 7094-7099.
[18] 彭小忠, 肖侃侃. 微创与开放方案置入椎弓根螺钉内固定修复胸腰椎骨折[J]. 中国组织工程研究, 2014, 18(26): 4212-4218. PENG Xiaozhong, XIAO Kankan. Minimally invasive versus open pedicle screw fixation for repair of thoracolumbar fractures[J]. Chinese Journal of Tissue Engineering Research, 2014, 18(26): 4212-4218.
[19] 田伟, 韩骁, 何达, 等. 导航辅助微创手术与传统开放手术治疗胸腰段脊柱骨折的对照研究[J]. 中华外科杂志, 2011, 49(12): 1061-1066. TIAN Wei, HAN Xiao, HE Da, et al. The comparison of computer assisted minimally invasive spine surgery and traditional open treatment for thoracolumbar fractures[J]. Chinese Journal of Surgery, 2011, 49(12): 1061-1066.
[20] Wang H, Zhou Y, Li C, et al. Comparison of Open Versus Percutaneous Pedicle Screw Fixation Using the Sextant System in the Treatment of Traumatic Thoracolumbar Fractures[J]. Clin Spine Surg, 2016.
[21] Wild MH, Glees M, Plieschnegger C, et al. Five-year follow-up examination after purely minimally invasive posterior stabilization of thoracolumbar fractures: a comparison of minimally invasive percutaneously and conventionally open treated patients[J]. Arch Orthop Trauma Surg, 2007, 127(5): 335-343.
[22] 薛峰, 付中国, 张殿英, 等. U形可折断椎弓根螺钉微创内固定治疗胸腰椎骨折[J]. 北京大学学报(医学版), 2013, 45(5): 728-731. XUE Feng, FU Zhongguo, ZHANG Dianying, et al. Minimal invasive internal fixation with U-shaped break-off pedicle screws for treatment of thoracolumbar fractures[J]. Journal of Peking University(Health Sciences), 2013, 45(5): 728-731.
[23] Fitschen-Oestern S, Scheuerlein F, Weuster M, et al. Reduction and retention of thoracolumbar fractures by minimally invasive stabilisation versus open posterior instrumentation[J]. Injury, 2015, 46(Suppl 4): 63-70.
[24] Court C, Vincent C. Percutaneous fixation of thoracolumbar fractures: current concepts[J]. Orthop Traumatol Surg Res, 2012, 98(8): 900-909.
[25] Rampersaud YR, Foley KT, Shen AC, et al. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion[J]. Spine(Phila Pa 1976), 2000, 25(20): 2637-2645.
[26] Ahmad FU, Wang MY. Use of anteroposterior view fluoroscopy for targeting percutaneous pedicle screws in cases of spinal deformity with axial rotation[J]. J Neurosurg Spine, 2014, 21(5): 826-832.
[27] Assaker R. Minimal access spinal technologies: state-of-the-art, indications, and techniques[J]. Joint Bone Spine, 2004, 71(6): 459-469.
[28] Mobbs RJ, Sivabalan P, Li J. Technique, challenges and indications for percutaneous pedicle screw fixation[J]. J Clin Neurosci, 2011, 18(6): 741-749.
[29] Gnanenthiran SR, Adie S, Harris IA. Nonoperative versus operative treatment for thoracolumbar burst fractures without neurologic deficit: a meta-analysis[J]. Clin Orthop Relat Res, 2012, 470(2): 567-577.
[30] Mroz TE, Abdullah KG, Steinmetz MP, et al. Radiation exposure to the surgeon during percutaneous pedicle screw placement[J]. J Spinal Disord Tech, 2011, 24(4): 264-267.
[31] Khoo LT, Beisse R, Potulski M. Thoracoscopic-assisted treatment of thoracic and lumbar fractures: a series of 371 consecutive cases[J]. Neurosurgery, 2002, 51(5): 104-117.
[32] Kim DH, Jahng TA, Balabhadra RS, et al. Thoracoscopic transdiaphragmatic approach to thoracolumbar junction fractures[J]. Spine J, 2004, 4(3): 317-328.
[33] Kim DY, Lee SH, Chung SK, et al. Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation[J]. Spine(Phila Pa 1976), 2005, 30(1): 123-129.
[34] Weiner BK, Walker M, Brower RS, et al. Microdecompression for lumbar spinal canal stenosis[J]. Spine(Phila Pa 1976), 1999, 24(21): 2268-2272.
[35] Sihvonen T, Herno A, Paljarvi L, et al. Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome[J]. Spine(Phila Pa 1976), 1993, 18(5): 575-581.
[36] Kim KT, Lee SH, Suk KS, et al. The quantitative analysis of tissue injury markers after mini-open lumbar fusion[J]. Spine(Phila Pa 1976), 2006, 31(6): 712-716.
[37] Jindal N, Sankhala SS, Bachhal V. The role of fusion in the management of burst fractures of the thoracolumbar spine treated by short segment pedicle screw fixation: a prospective randomised trial[J]. J Bone Joint Surg Br, 2012, 94(8): 1101-1106.
[38] Richter M, Mattes T, Cakir B. Computer-assisted posterior instrumentation of the cervical and cervico-thoracic spine[J]. Eur Spine J, 2004, 13(1): 50-59.
[39] Acosta FJ, Thompson TL, Campbell S, et al. Use of intraoperative isocentric C-arm 3D fluoroscopy for sextant percutaneous pedicle screw placement: case report and review of the literature[J]. Spine J, 2005, 5(3): 339-343.
[40] Hott JS, Deshmukh VR, Klopfenstein JD, et al. Intraoperative Iso-C C-arm navigation in craniospinal surgery: the first 60 cases[J]. Neurosurgery, 2004, 54(5): 1131-1136.
[41] Holly LT, Foley KT. Intraoperative spinal navigation[J]. Spine(Phila Pa 1976), 2003, 28(15): 54-61.
[42] Verlaan JJ, Diekerhof CH, Buskens E, et al. Surgical treatment of traumatic fractures of the thoracic and lumbar spine: a systematic review of the literature on techniques, complications, and outcome[J]. Spine(Phila Pa 1976), 2004, 29(7): 803-814.
[43] Rodriguez-Vela J, Lobo-Escolar A, Joven-Aliaga E, et al. Perioperative and short-term advantages of mini-open approach for lumbar spinal fusion[J]. Eur Spine J, 2009, 18(8): 1194-1201.
[44] Jiang XZ, Tian W, Liu B, et al. Comparison of a paraspinal approach with a percutaneous approach in the treatment of thoracolumbar burst fractures with posterior ligamentous complex injury: a prospective randomized controlled trial[J]. J Int Med Res, 2012, 40(4): 1343-1356.
[1] 吴刚, 王世隆, 段笑然, 汪洋, 张洪川. 外侧入路关节镜辅助微创距下关节融合[J]. 山东大学学报 (医学版), 2020, 1(8): 107-114.
[2] 吕龙飞,李林,李树海,亓磊,鲁铭,程传乐,田辉. 腔镜下细针导管空肠造瘘在微创McKeown食管癌切除术中的应用[J]. 山东大学学报 (医学版), 2020, 1(7): 77-81.
[3] 林萍珍,薛娇美,杨蓓,李萌,周麦琳,曹枫林. 基于Pearson相关系数的癌症患者创伤后成长与心理适应相关性的Meta分析[J]. 山东大学学报(医学版), 2017, 55(9): 110-121.
[4] 王维军,周宁全,王超. CT定位微创徒手穿刺软通道技术治疗中等量高血压脑出血68例[J]. 山东大学学报(医学版), 2017, 55(5): 61-65.
[5] 杜金阁,陈慧,杨孝荣,吕明. STAT4 rs7574865位点单核苷酸多态性与系统性红斑狼疮易感性Meta分析[J]. 山东大学学报(医学版), 2017, 55(5): 95-102.
[6] 王丽丽,霍彬,王磊,汪浩,侯定坤,霍小东,王金焕,臧立,曹强,柴树德,王海涛. 亚肺叶切除联合125I粒子植入治疗早期肺癌有效性的Meta分析与系统评价[J]. 山东大学学报(医学版), 2017, 55(10): 76-83.
[7] 刘松涛,沈斌,林辉,李香伟,温昭科. 全胸腔镜下心脏不停跳与停跳二尖瓣置换术的对比[J]. 山东大学学报(医学版), 2016, 54(8): 39-43.
[8] 徐闯,戚大春,李贤让,祖萌,李健,刘明廷. 初次髋关节置换术后引流与否的Meta分析[J]. 山东大学学报(医学版), 2016, 54(6): 43-49.
[9] 木哈达斯·吐尔逊依明,帕它木·莫合买提,托兰古丽·买买提库尔班. CDKAL1(rs10946398 C/A)基因多态性与2型糖尿病易感性关系Meta分析[J]. 山东大学学报(医学版), 2016, 54(2): 75-85.
[10] 卢中,申运华,严中亚,黄向阳,李春生,李华宝,杨冬妹. 经胸小切口封堵与经皮介入封堵术治疗房间隔缺损的比较[J]. 山东大学学报(医学版), 2016, 54(2): 49-52.
[11] 苏静, 薛娇美, 孙菲菲, 郭兆新, 程翔宇, 孟力维, 刘照旭. 肾单位保留术和肾癌根治术治疗T1b期肾癌的Meta分析[J]. 山东大学学报(医学版), 2015, 53(9): 65-70.
[12] 刘京生, 刘桂华, 杜昆, 赵倩, 翁韶波, 赵学英, 张喜庄, 金讯波. 中国人群中血清TK1对不同恶性肿瘤诊断价值的Meta分析[J]. 山东大学学报(医学版), 2015, 53(9): 71-79.
[13] 吴珍, 宋国栋, 王伟. 他汀类药物对稳定期慢性阻塞性肺病治疗效果的Meta分析[J]. 山东大学学报(医学版), 2015, 53(2): 12-18.
[14] 王音, 马喆, 陶国伟, 刘韶平, 丁婷婷, 石琳琳. 关于产前诊断胼胝体发育不全患儿预后的Meta分析[J]. 山东大学学报(医学版), 2015, 53(10): 66-72.
[15] 孙媛媛, 高伟, 崔英, 张红, 焦建芬, 李衎, 徐瑞彩. 肿瘤化疗患者应用植入式静脉输液港与PICC效果比较的系统评价[J]. 山东大学学报(医学版), 2015, 53(10): 73-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!